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2 Sleep and Neuroimaging Center, Faculty of Psychology, Southwest University,
Chongqing, 400715, China
3 Department of Applied Mathematics and Electrical and Computer Engineering,
University of Washington, Seattle USA

* corresponding: zhenxing.hu@femto-st.fr
‡ shared senior authorship.

Abstract

Humans just don’t fall asleep like a log – or step-function. Rather, the sleep-onset
period (SOP) exhibits dynamic and non-monotonous changes of electroencephalogram
(EEG) with high, and so far poorly understood, intra- and inter-individual variability.
Computational models of the sleep regulation network have suggested that the transition
to sleep can be viewed as a noisy bifurcation at a saddle point which is determined by
an underlying control signal or “sleep drive”. However, such models do not describe how
internal control signals in the SOP can produce rapid switches between stable wake and
sleep states, nor how these state-space changes are translated in the macroscopic EEG.
Here, we propose a minimally-parameterized stochastic dynamical model, in which one
slowly-varying control parameter drives the wake-to-sleep transition while exhibiting
noise-driven bistability. We provide a procedure for estimating the parameters of the
model given single observations of experimental sleep EEG data, and show that it
can reproduce a wide variety of SOP phenomenology. Using the model to analyze a
pre-existing sleep EEG dataset, we find that the estimated model parameters correlate
with subjective sleepiness reports. These results suggest that the bistable characteristics
of the SOP can serve as biomarkers for tracking intra- and inter-individual variability of
sleep-onset disorders.

Author summary

Recent neuroscience research has showed a growing interest in understanding the com-
plexity of how we fall asleep. Electroencephalographic (EEG) recordings of the sleep
onset period show all the hallmarks of a noise-driven bistable system, but there currently
exists no computational model that can be fitted on experimental data to understand this
behavior. In this paper, we propose a minimally-parameterized model, which dynamics
corresponds to the motion of an noisy overdamped particle in a slowly tilting bistable
landscape, as well as a way to fit it to an individual’s sleep-onset EEG. We show that
the fitted parameters of individual participants correlate with their subjective reports of
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sleepiness, suggesting that the model can capture important aspects of inter-individual
variability, as well as provide potential biomarkers for sleep-onset disorders.

Introduction 1

The ability of organisms to keep track of the time of day and maintain cycles of stable wake 2

and sleep states has fascinated physiologists for a large part of the 20th century [1], and has 3

become an iconic target of research for mathematical and dynamical-system modeling [2]. 4

Following seminal work by Borbély, Daan and Beersma [3], mathematical models for sleep- 5

wake regulation have traditionally included the interaction between two coupled processes: 6

a relaxation oscillator (the homeostatic drive) by which ‘sleep pressure‘ monotonically 7

increases during wake and relaxes during sleep; and a circadian oscillator which modulates 8

homeostatic thresholds approximately sinusoidally [4]. While phenomenological 1 in 9

nature, these models were found in good accordance with predictions made by more 10

complex biophysical models of the ascending arousal system, such as Phillips’ and 11

Robinson’s [6], and have been used to explain such diverse phenomena as sleep restriction 12

experiments, the effect of caffeine, or changes in sleep patterns during development (for 13

a review, see [7]). 14

Among other fascinating sleep-related dynamical phenomena, the transitional phase 15

between wake and sleep (‘sleep-onset period’, or SOP) has attracted recent attention in 16

the neuroscience community [8]. While long regarded as a monotonic process akin to “ 17

flicking a switch” or, alternatively, a long sequence of successive substates [9], the SOP is 18

now widely regarded as a continuous, dynamic process that fluctuates progressively, but 19

non-monotonically, between wake and sleep, and with high heterogeneity both within 20

and between individuals [10]. At the surface EEG level, the wake-to-sleep transition 21

is primarily marked by the progressive disappearance of the EEG alpha rhythm, and 22

exhibits all the hallmarks of bistable behaviour (Fig. 1-top). However, while it is 23

increasingly suspected that the internal dynamics of the SOP has both cognitive and 24

clinical significance in subsequent sleep and wake periods [11, 12], there exists little 25

mechanistic understanding of what produces such patterns and their heterogeneity. Even 26

at a basic phenomenological level, the SOP and its associated first stage of sleep (N1) 27

remains the period with the lowest inter-scorer agreement and classification accuracy in 28

both humans [13] and machines [14]. 29

In recent work [15], the Philipps-Robinson (PR) model of the all-day sleep regulation 30

network [6] was used to approximate the dynamics near the transition from wake to 31

sleep. At the tipping point corresponding to the critical sleep drive value necessary for 32

the transition to occur, the dynamics can be reduced to the equation of motion of a 33

particle in a frictional and approximately cubic potential. In this framework, the SOP is, 34

therefore, modeled as a saddle-point bifurcation between stable wake and stable sleep, 35

which the authors propose to be driven by gradual increase of the sleep drive, which 36

comprises the approximately 24-h periodic circadian drive from the suprachiasmatic 37

nucleus (SCN) and the homeostatic drive due to sleep homeostat (HOM). While their 38

reduced model could generate analytical scalings of fluctuation variance and spectral 39

width in state-space, that is consistent with numerical simulation by the full PR model, it 40

remains consistent with a traditional, ‘monotonic‘ view of the SOP, and fails to describe 41

how internal control signals (or noise) during the SOP can produce the back-and-forth 42

1by phenomenological, we refer here to models that attempt to represent observable properties of
their targets without necessarily being derivable from an existing underlying theory [5]. In neuroscience
and neurology, the word ’phenomenological’ is also used to relate to a participant’s subjective experience,
but this is not the meaning we use here.
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Fig 1. Study overview. The sleep-onset period (SOP) has a strongly bistable
phenomenology, marked by a non-monotonous decrease of the EEG frequency and
high inter-individual variability, seen here in three illustrative wavelet spectrograms
(top). We model the bistable cortical dynamics of the SOP by introducing a minimally-
parameterized stochastic dynamical system, which dynamics corresponds to the motion
of an noisy overdamped particle in a slowly tilting bistable landscape (bottom). We
provide a procedure to estimate model parameters given individual observations of
experimental sleep EEG data (right), which allows us to test whether model parameters
correlate with clinical feature.

switches between wake and sleep that are seen in real experimental data. 43

In addition, this and other related stochastic models of wake-sleep transition be- 44

haviour [16,17] only provide simulations of the phenomenon of interest (‘how possibly’ 45

explanations in the sense of [18]), but do not describe how these state-space phenomena 46

are translated in the macroscopic EEG. First, they do not provide a data-driven em- 47

bedding of the (high-dimensional, measurement-noise prone) EEG data in which these 48

simplified dynamics are effected. Second, they do not provide a fitting procedure by 49

which model parameters can be identified given experimental sleep data - a non-trivial 50

task when the underlying models are stochastic and non-stationary, and data may come 51

in only one single observation per participant (i.e. one given SOP). In the absence of such 52

data-driven procedure, SOP models fall short of explaining the occurrence of a particular 53

EEG pattern and, perhaps more importantly, their association with concurring disorders 54

such as insomnia or anxiety in specific individuals. 55

To do so, we propose a minimally parameterized stochastic dynamical model in which 56

the system’s state is governed by a bistable potential landscape (Fig 1, see Materials and 57

Methods for details). In previous work, a similar form was used to model how external 58

drivers control switches between the two neural states that correspond to forward and 59

backward motion in C. Elegans [19]. Here, the system’s state is assumed to move on 60

a continuum between two potential basins correspond to the ’wake’ and ’sleep’ states 61

and, instead of using an external control signal to actuate the state into sleep, we let a 62

putative ’sleep drive’ tilt the landscape towards the sleep basin (Fig 1, left to right), with 63

the result of making noise-driven transitions to sleep not inevitable, but increasingly 64

more likely, over the SOP. 65

In addition, we construct a generalized, low-dimensional representation of the SOP 66
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EEG by performing a low-rank SVD decomposition of the EEG spectrogram and use 67

the linear interpolation between the two wake and sleep SVD modes to represent the 68

dynamics linked to the transition. We provide and validate a procedure for fitting 69

our dynamical system model to the trajectory of that interpolation, and show that its 70

dynamics can reproduce a wide-variety of SOP phenomenology. Finally, using the model 71

to analyze a preexisting sleep (nap) EEG dataset, we test whether the estimated model 72

parameters correlate with subjective sleepiness reports collected around the nap. 73

Results 74

The bistable characteristics of the SOP are preserved in a low- 75

rank embedding of the EEG spectrogram 76

Sleep-onset periods (SOP) in our EEG dataset of healthy adults have a typical, strongly 77

bistable phenomenology, marked by a non-monotonous decrease of the EEG alpha (8- 78

12Hz) frequency [8]. In a typical participant (Fig. 2a-top), the alpha component exhibits 79

a prolonged, relatively stable amplitude early in the analysis window (here, from about 80

0s to 100s). This alpha activity gradually becomes more transient and intermittently 81

suppressed, indicative of a “bistable” pattern in which the signal switches between 82

high and low amplitude on a short timescale. In the transitional period (inside the 83

dashed line), there are rapid switches between alpha component and the low-frequency 84

component. Beyond 300s, the alpha band is largely diminished and replaced by an 85

increasingly dominant low-frequency (0.5–4 Hz) component, reflecting the transition 86

from wake into sleep-like regimes. 87

We construct a generalized, low-dimensional representation of the SOP spectrogram 88

by computing the singular value decomposition (SVD) of the spectrogram separately in 89

the initial wake and final sleep segment (see Materials and Methods), with dominant 90

modes U1
w and U1

s respectively (Fig.2a-middle). We then generate an embedding µ(t) 91

of the SOP spectrogram by projecting the spectrogram on U1
w − U1

s . Coefficient µ(t) 92

maps how strongly the EEG at each moment aligns with the wake versus sleep mode. 93

This coefficient neatly compresses the broad changes seen in the high-dimensional 94

time-frequency plot - including shifts in dominant frequency modulation - into a one- 95

dimensional time series (Fig.2a-middle). 96

This low-dimensional representation provides a state-space for our model. Specifi- 97

cally, we fit below our general dynamical systems model to the trajectories of the µ(t) 98

embedding. Conversely, the embedding also allows us to project state-space dynamics 99

back into observation (EEG) space, using the linear interpolation µU1
w + (1− µ)U1

s (Fig. 100

2a-bottom). Although some finer details are inevitably lost in this low-dimensional repre- 101

sentation, the major transitions and overall shifts from wakefulness to sleep are captured 102

by this low-rank approximation. It also captures important inter-individual variations 103

(Fig. 2-b), which motivates the need to fit model parameters at the individual level and 104

look for potential associations of these parameters with individual sleep characteristics. 105
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b) Embedding diversity across different subjectsa) Embedding extraction procedure (sub9)

Fig 2. Bistable dynamics are manifested in a low-rank embedding of the SOP
EEG spectrogram. (a) single-subject example. Top: Spectrogram representation
of a single-channel (Oz, occipital, median) EEG recording of the SOP, from wake (left)
to sleep (right), for one illustrative participant. Grayed windows identify the initial
stable wake and final stable sleep phases, and dashed lines represent the start and the
end of transitional period. Middle: Dominant SVD modes for the wake (U1

w, left) and
sleep states (U1

s , right) extracted from the initial and final windows. A low-dimensional
representation µ(t) is obtained by projecting the normalized spectrogram to the principal
direction (U1

w − U1
s ), and captures the major transitions and shifts from wakefulness to

sleep. Bottom: Reconstructed spectrogram obtained from the µ(t) embedding by linear
interpolation between the wake and sleep mode. (b) µ(t) embeddings extracted from
N=19 healthy participants in our test dataset (see Materials and Methods.

Changes to two model parameters reproduce a wide variety of 106

SOP phenomenology. 107

To model the dynamics of µ(t), we propose a minimally parameterized first-order model 108

of the form, 109

x′ = F (x, β(t)) + n(t) (1)

where F (x, β(t)) represents the intrinsic nonlinear dynamics containing two stable states 110

separated by a saddle; β(t) is a control parameter dictating the shape of landscape that 111

evolves over long time scales, and n(t) is additive noise adding stochastic forcing to the 112

intrinsic dynamics. The nonlinear dynamics F (x, β(t)) is modeled by the cubic function 113

dxt = −
(
xt + 1

) (
xt − β(t)

) (
xt − 1

)
dt + σ dWt,

β(t) = tanh
(
α (t− t0)

)
.

(2)

which has two stable fixed points at x = ±1, and a single unstable fixed point at 114

a time-varying location β(t) which is parameterized by a slowly-drifting hyperbolic 115

tangent function with slope α and offset timing t0 (Fig 3). In broader context, the 116

phenomenon of nonlinear interactions between neighboring stable (fixed) points is also 117

a well-studied representative model in optical and atomic physics, with nonlinearity 118

producing nontrivial dynamics in the dynamics [20,21]. The cubic model considered is 119

also a canonical model for studying the Langevin dynamics between two stable states [22]. 120

Thus (2) is a canonical model for many systems where the nonlinear dynamics between 121

two stable states drives the observed transition phenomenon. 122

By controlling how quickly the landscape changes (α) and how strongly the dynamics 123

is subjected to stochasticity (σ), the model can capture a range of transition behaviors, 124
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Fig 3. Schematics of time-varying stochastic bistable model.
a) The potential functions, V (x), transitions from a “wake” basin (right) to a “sleep”
basin (left) as β shifts from -1 to +1. b) β(t) = tanh(α(t − t0)) governs the gradual
tilt of the landscape over time. c) A representative trajectory x(t) simulated from the
stochastic differential equation Eq. 2).
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Fig 4. Interactions between the rate of landscape change (α) and noise (σ)
in wake-to-sleep transitions. Each panel shows a simulated spectrogram over time,
with α increasing from top to bottom (0.1, 0.4, 2) and σ increasing from left to right
(0.3,0.6,1). In general terms, larger α values tend to induce earlier transitions to sleep
(compare top and middle rows), and larger σ values lead to increased flickering (compare
middle and right columns). All x(t) (grey) are normally stochastic, but simulated
here with the same random seed for the purpose of comparison. β(t) (red, dashed) is
normalized in amplitude, also for visualization. EEG embedding similar as Fig. 2.

from monotonous gradual shifts to abrupt, noise-driven back-and-forth switches (Fig 4). 125

In general terms, larger α values tend to induce earlier transitions to sleep (compare 126

Fig 4-top and middle rows), and larger σ values lead to increased flickering between the 127

wake and sleep states before settling into one (compare Fig 4-middle and right columns). 128

However, the influence of the two parameters is not entirely independent, nor linear. 129
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First, as α grows, the model exhibits a saturation effect in which, after a certain point, 130

transition to sleep does not occur earlier for larger values of α (Fig 4-left column, middle 131

and bottom rows). This is due (i) to the nonlinear relationship between α and the 132

timescale of the underlying tanh function, and possibly (ii) to sampling-rate limits of 133

the dynamical system itself, which cannot track very rapid landscape shifts beyond a 134

certain threshold. Second, at fixed levels of α (e.g. Fig 4-top row), increasing σ level 135

can induce faster transitions. Finally, at large α values, the pronounced “tilt” in the 136

landscape can keep the system in the sleep state after transitioning, even when higher 137

noise levels are present. The wide variety of this phenomenology in state-space can be 138

explained by the interplay between the landscape and stochasticity, which potentially 139

lead to the empirical inter-individual variations seen in Fig 2-b. 140

Model parameters can be recovered from a single experimental 141

trajectory of the system 142

Infering likely values for parameters α, t0 and σ given a single realization, i.e. one 143

participant’s SOP EEG spectrogram is made difficult because the model is (1) stochastic 144

(so a single value of σ can lead to an infinite number of realizations) and (2) non- 145

stationary (so a given intermediate value βi = β(ti) can only be fitted given one time 146

sample of the observed trajectory). In Section Materials and Methods, we provide a 147

Markov Chain Monte Carlo (MCMC) formulation of the parameter-fitting problem. 148

Here, we use simulated data to evaluate how the procedure recovers the parameters 149

under both stationary and non-stationary assumptions, and then illustrate parameter 150

estimation with one representative example of experimental SOP data. 151

Fig 5. Model parameter estimation for simulated single trajectories under the
stationary landscape assumption (β(t) = β). Left: 30 trajectories were simulated
for every value of β ∈ [−0.8, 0.8]. Distributions of MCMC estimates for β (y-axis) are
plotted against the true values (x-axis). Error bars indicate standard deviations of
estimates across multiple trajectories of the same β value. Right: 30 trajectories were
simulated for every σ ∈ {0.2, 0.5, 1.0}. Distributions of MCMC estimates for σ (y-axis)
are plotted against the true values (x-axis). Error bars are barely visible, but similarly
indicate one standard deviations across multiple trajectories of the same σ.

Stationary landscape: when the double-well potential is stationary (i.e., β(t) = β), the 152

system’s trajectory only reflects noise-driven fluctuations within a fixed landscape. Under 153

these assumptions, we simulated 30 random realizations (x(t) trajectories) for every pair 154
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of values β ∈ [−0.8, 0.8] and σ ∈ {0.2, 0.5, 1.0} and evaluated recovered parameters for 155

each trajectory with MCM. The procedure was able to recover both β and σ. For β, 156

posterior-mean estimates over the 30 trajectories showed good agreement with the true 157

β values (Fig 5-left), but the standard deviation over individual trajectories, although 158

relatively moderate, was non-negligible, suggesting that some degree of degeneracy (i.e. 159

different β values may yield similar trajectories). For σ, MCMC estimates closely tracked 160

true values (Fig 5-right), showing both low bias and low variance. This likely reflects that 161

the underlying likelihood function is more sensitive to changes in σ, making noise-related 162

parameters easier to pin down compared to the possibly overlapping trajectories that 163

can occur for varying β. 164

Non-stationary landscape: In scenarios with a time-varying landscape, the procedure 165

needs to estimate not only noise-level σ but also t0 (the tipping point at which the 166

potential starts to change) and α (the steepness of that change). As before, we simulated 167

30 random trajectories for every value of α ∈ [0.05, 3] (logarithmically-spaced), t0 ∈ 168

{4, 5, 6} and and σ ∈ {0.2, 0.5, 1.0}, and evaluated recovered parameters with MCMC 169

estimation. 170

Fig 6. Model parameter estimation for simulated single trajectories under the
varying-landscape, non-stationary assumption. A: 30 trajectories were simulated
for every value of t0 ∈ {4, 5, 6} and recovered MCMC estimates for t0 (y-axis) are plotted
against true values (x-axis). Error bars (barely visible) indicate standard deviations
across multiple realizations of the same t0, and dashed line indicates perfect estimation.
C. 30 trajectories were simulated for every value of σ ∈ {0.2, 0.5, 1.0}, and MCMC
estimates (y-axis) are plotted against true values (x-axis). Error bars (barely visible)
indicate standard deviations across multiple realizations of the same σ, and dashed
line indicates perfect estimation. C: 30 trajectories were simulated for every value of
α ∈ [0.05, 3.0] (logarithmically-scaled), and MCMC estimates (y-axis) are plotted against
true values (x-axis). Error bars indicate standard deviations across multiple realizations
of the same σ, and dashed curve indicates perfect estimation. D: Varying β(t) shape
(x-axis:time) as a function of slope α, illustrating a saturation effect at larger α values.

As in the fixed-landscape scenario, parameter σ was accurately recovered for each 171

individual simulation (Fig 6-b) with minimal standard deviation across multiple realiza- 172

tions of the same noise level (Fig 6-b). In contrast, t0 estimation (Fig 6-a) exhibited 173
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a consistent bias, with smaller t0 values tending to be overestimated and larger values 174

overestimated. This bias is possibly due to the normal prior centered at t0 = 5, as well 175

as less sensitivity of likelihood to changes of t0. Despite this bias, the ordering of the 176

estimated t0 still reflects the true ordering (i.e., the rank relationship is preserved), which 177

is sufficient for distinguishing earlier from later transitions. Similarly for α(Fig 6-c), the 178

MCMC procedure overestimated small and underestimates large α values, although it 179

preserved ordering (Spearman r = 0.996). Notably, as α increases beyond approximately 180

1 – 1.5, the estimated values begin to plateau, indicating a saturation effect. This is 181

possibly because, as α becomes large, the slope in the underlying tanh function saturates 182

(Fig 6-d), plausibly making it more difficult for the estimation procedure to distinguish 183

further increases in α. 184

Validation with experimental data: Finally, we illustrate here parameter estima- 185

tion, and the associated reconstructed EEG spectrogram on one illustrative example of 186

experimental SOP data, recorded from one participant (female, 19; see Materials and 187

Methods). 188

To compare the fitted model with the observed data, we used posterior predictive 189

check by generating 4000 trajectories from the joint posterior distribution over parameter 190

sets, and computed two metrics for goodness of fit: Kullback-Leiber (KL) divergence, 191

which measures how closely the statistical distribution of a single simulated trajectory 192

resembles that of the real EEG embedding, and Root Mean Square Error (RMSE), which 193

reflects point-wise temporal alignment between model output and data. Neither metric 194

alone is perfect; KL divergence ignores temporal correlations in time, whereas RMSE 195

does not capture model stochasticity due to its point-wise nature. 196

We display the distribution of both metric scores (Fig 7-a). The distribution of 197

KL-Divergence and RMSE over 4000 simulated trajectories of the estimated models 198

shows that most KL values cluster near 0.16, and RMSE around 0.87, indicating that 199

for many model realizations from the posterior point clouds, the distribution of states 200

is moderately close to the empirical data. The sampled trajectory with minimal KL- 201

distance to the true trajectory over the set of 4000 trajectories is obtained for KL 202

= 0.06. Visually, this trajectory has a similar distribution of x(t) to the original 203

embedding (Fig 7-b), confirming that the minimal-KL solution indeed approximates 204

the overall dwell-time distribution of the embedding µ(t). The trajectory corresponding 205

to minimal RMSE xmin RMSE(t) over the sampled set of trajectories aligns relatively 206

well with the original µ(t) (Fig 7-c), and the real embedding remains with the 10%-90% 207

range of trajectories simulated from the joint posterior distribution. The corresponding 208

reconstructed spectrogram in Fig 7-g can be compared with the original SVD embedding 209

in Fig 7-f, confirming the model’s ability to generate realistic spectrograms. 210

Similarly, the simulated trajectory with joint maximal posterior density (joint MAP) 211

to the experimental data xmin RMSE(t) is illustrated in Fig 7-d, and the corresponding 212

spectrogram reconstruction in Fig 7-h. The Joint MAP reconstruction replicates global 213

spectral transitions and captures the intermittent switching phenomenon. While the 214

trajectory does not match point-by-point, due to the stochastic nature of the model, it 215

captures the bistable dynamics and eventual transition to sleep-like states. 216
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Fig 7. Illustration of fitted parameters and model reconstruction on experi-
mental EEG data. (a) Distributions of the Kullback–Leibler (KL) divergence and
Root Mean Sqaure Error (RMSE) between the original trajectory and 4000 simulated
trajectories from the posterior distributions of estimated model. Solid lines identify the
simulated trajectories with the mode KL, and mode RMSE, over the random set. (b)
Comparison of the probability density function of the minimum-KL trajectory (blue)
with that of the original trajectory µ(t) (red). (c) Time-domain comparison of the
minimal-RMSE solution (blue) with the original embedding µ(t) (red). Shaded areas
correspond to the 10% - 90% amplitude span of solutions from the 4000 sampled trajec-
tories. (d) Time-domain comparison of the Joint MAP solution (dark gray) with the
original embedding µ(t)(red). Shaded areas correspond to the 10% - 90% amplitude span
of solutions from the 4000 sampled trajectories. (e) Wavelet spectrogram of the original
participant EEG. (f) Reconstructed spectrogram from the original µ(t) embedding,
obtained using the linear interpolation µU1

w + (1− µ)U1
s (similar to Fig. 2a)-bottom).

(g) Reconstructed spectrogram from the minimum-RMSE solution of panel c. (h)
Reconstructed spectrogram from Joint MAP solution of panel d.

Estimated model parameters correlate with subjective ratings of 217

sleepiness 218

The sleep (nap) dataset used in this study contains subjective reports of sleepiness by 219

N=19 participants on two different measures: the Stanford Sleepiness Scale (SSS) and 220

Karolinska Sleepiness Scale (KSS). 221

In an exploratory manner, we investigated whether estimated parameters from the 222

model (slope and tipping point of sleep drive α and t0, noise σ) correlate with any of these 223
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characteristics. We found that the pre-nap sleepiness level on the Stanford Sleepiness 224

Scale (SSS) shows a significant positive rank relationship with α (Spearman r = 0.65 for 225

α̂ (Fig 8-a) and 0.59 for σ̂ (Fig 8-b); both p-value < 0.05/3 after Bonferroni correction; 226

correlations with pre-nap KSS scores were consistent, albeit not significant: α̂ r=0.33, 227

p=.16; σ̂: r=0.41, p=.08). In other words, participants whose fitted model indicated a 228

steeper sleep drive tended to report higher subjective sleepiness before the nap. One 229

possible, but very exploratory, explanation could be that higher sleep propensity may 230

lead to a more pronounced or rapid transition, although a larger number of participants 231

would be obviously needed to confirm the interpretation. The positive correlation 232

between estimated noise-level and subjective sleepiness before the nap suggests that 233

participants who felt sleepier also exhibited higher intrinsic noise levels, which is seen 234

in Fig. 4 to facilitate earlier and/or more frequent transitions. This potential role of 235

noise, if confirmed, would open an alternative mechanistic view of the wake-to-sleep 236

transition beyond the conventional rising-sleep-drive model, linking internal neural noise 237

to behavior aspects. There was no statistical correlation between model parameters and 238

subsequent KSS/SSS ratings after the nap. 239

Fig 8. Correlation of fitted model parameters with subjective sleepiness
report.(a-b) Scatter plots and linear fit model of parameters (left: α̂, right: σ̂) and
subjective assessment of pre-nap sleepiness of Stanford Sleepiness Scale (SSS).

Discussion 240

Context and contribution 241

The sleep-onset period (SOP) is increasingly recognized as a dynamic transition rather 242

than a simple binary switch [11, 12]. Yet traditional analyses, including in the clinic, 243

often reduce it to a single point, typically the first appearance of stage N1 [23]. Even 244

more refined staging methods, such as the Hori classification [24], do not fully encompass 245

the fluctuating continuum during SOP. In response, our study introduces a new modeling 246

framework with three main contributions: (1) a data-driven embedding strategy for high- 247

dimensional EEG time-frequency signals, paired with a parsimonious bistable stochastic 248

model governed by a single, slowly varying parameter that drives the wake-to-sleep 249

transition; (2) a parameter-estimation procedure that is validated in simulated trajectory 250

and real data given single trajectory, thereby allowing systematic quantification of 251

intra- and inter-individual differences in SOP dynamics; and (3) exploratory evidence 252

that estimated model parameters may correlate with subjective ratings of sleepiness 253

around the nap, suggesting a potential utility for differentiating subtypes of sleep-onset 254
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difficulties. 255

Regarding the first contribution, we introduce a parsimonious embedding strategy 256

based on linear interpolating the first SVD mode of wake and sleep states. This 257

embedding not only reduces dimensionality but also preserves key features of the SOP 258

trajectory. Then we model the SOP index (µ) as a minimal, parameterized stochastic 259

model in which a slowly changing potential landscape and a tunable noise term together 260

produce a wide range of SOP phenomena, including smooth drift, early or delay switch, 261

as well as noise-driven flickering. Unlike prior models [15], which assume near-equilibrium 262

conditions with negligible noise-level, our approach explicitly incorporates both time- 263

varying parameters (β(t)) and stochastic fluctuations, allowing us to characterize the 264

interactions between landscape and stochastic forcings during SOP. 265

Fitting parameters of stochastic model given single trajectory is challenging. Here, we 266

employ a Markov chain Monte Carlo (MCMC) approach to fit its parameters, the slowly 267

varying “sleep drive” and the noise term. We firstly validate the fitting in simulated 268

settings, then apply it on real EEG recordings. The simulated-data experiments reveal 269

that, while certain parameters (e.g., α, t0) can exhibit moderate variability, their rank 270

ordering across individuals is largely preserved, thus allowing reliable comparisons of 271

inter-individual differences. 272

With an exploratory correlation analysis, we formulate the hypothesis that model- 273

derived parameters can be potentially served as biomarkers for tracking intra- and 274

inter-individual variability of sleep-onset disorders. Testing this hypothesis will require a 275

large cohort of patients, comparing individuals with conditions like insomnia, delayed 276

sleep phase, or narcolepsy to healthy sleepers. For example, our model may predict that 277

patients with insomnia may have abnormally low or high noise levels, or a slower drift 278

of the sleep drive (β), whereas narcolepsy or sleep-deprived individuals might show an 279

abnormally steep drive toward sleep. Such applications could yield quantitative indices 280

for diagnosing and tracking these conditions, complementing existing clinical scales. 281

Comparison with previous work 282

Our findings extend and integrate several threads of prior research on sleep onset 283

dynamics and modeling. Early mechanistic frameworks of sleep-wake regulation (e.g. the 284

two-process model and “flip-flop” switching circuits) established the concept of a bistable 285

control of sleep and wake states, but these models usually involve many variables and 286

parameters with the lack of linking to macroscopic measurements, making them difficult 287

to fit directly to EEG data. On the other end of the spectrum, data-driven approaches 288

have been developed to track sleep onset. For example, Prerau et al. (2014) [25] 289

used a statistical dynamic model to compute a continuous probability of wakefulness 290

by combining EEG and behavioral measures, improving the temporal precision of 291

SOP tracking over traditional sleep-stage scoring, but failed to provide mechanical 292

insight. However, contrary from these approaches, our model explicitly captures the 293

SOP dynamics through a physical description based on stochastic dynamical systems. 294

By gradually adjusting the position of the central barrier between wake and sleep 295

attractors, our model effectively captures the continuous and stochastic nature of sleep- 296

onset phenomena observed empirically, including intermittent reversals or ”flickering” 297

between wake-like and sleep-like states. 298
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Limitations and future directions 299

This work has a number of limitations, which we describe here and for which we suggest 300

potential strategies to address them in future work. 301

1) Parameter estimation in stochastic system: Estimating parameters in 302

stochastic models is challenging. Firstly, a large stochastic perturbation can obscure the 303

underlying system dynamics, making it difficult to accurately estimate the deterministic 304

term. Second, fitting the parameters of a stochastic model to a single trajectory (one 305

SOP per subject) is inherently difficult [26] because the variability observed in one time 306

series may be attributable to multiple distinct parameter sets. Finally, this challenge 307

is amplified in non-stationary systems with time-varying parameters [27]. In future 308

work, we will leverage the neural posterior estimators to match the time-varying, noisy, 309

and single-realization SDE case in our sleep-onset model, which is grounded in recent 310

methodology development of simulation-based inference [28,29]. 311

2) Embedding strategy and dimensionality: Our current 1-D embedding 312

leverages the idea of mutual inhibition - interpolating between wake and sleep modes 313

(µUw+(1−µ)Us), to capture the rapid switches in EEG spectral content. In practice, this 314

one-dimensional representation, µ, could be approximated as an affine transform of V2 (if 315

one applies SVD across the entire analysis window), given the experimental observation 316

that U1
w − U1

s ≈ U2 (see Supplementary Materials, where we provide a proof for the 317

affine link between µ and V2). While this consistency validates our simplified linear 318

blending for describing key aspects of the SOP trajectory, it also highlights its inherent 319

limitation: the energy simply shifts from one mode to another mode. Consequently, 320

we miss more nuanced amplitude fluctuations, such as the ”flat spectrum”, sometimes 321

observed during transitions and thus fail to accurately reflect other physiological process 322

manifesting as global decreases or gradual shifts in EEG power. In many subjects, 323

this 1-D scheme suffices to capture fundamental wake-sleep transitions; however, going 324

forward, incorporating additional dimensions (e.g., energy fluctuations) approaches would 325

allow the model to accommodate and potentially help uncover additional physiologically 326

relevant process, such as the change of homeostasis. 327

3) Assumption of one global sleep-drive: Our current model makes a modeling 328

assumption that one global sleep-drive dictates the wake-to-sleep transition, and does 329

not attempt to dissociate the influence of homeostasis and circadian rhythm. Our 330

current formulation of the sleep drive, β(t), is a single, monotonic, exogenous parameter. 331

While this simplification captures the idea that the overall drive increases during the 332

sleep-onset period, it does not differentiate between distinct physiological components 333

that are known to co-modulate sleep transitions. In neural systems, control signals are 334

often shaped by both a deterministic, feed-forward drive and a state-dependent feedback 335

mechanism. Although the classical circadian rhythm is typically a long-term process, 336

the embedding developed here suggests that during sleep onset, a fast, deterministic 337

component may emerge that prepares the neural system for transition. Without providing 338

a physiologically grounded explanation of what β(t) represents, our current formulation 339

may oversimplify this complex interplay. In future work, one could aim to disentangle 340

these components, potentially by leveraging dynamic system identification methods 341

(e.g., dynamic SINDy [30]) that can infer separate contributions from feed-forward 342

and state-dependent drives. This refinement will potentially enhance their biological 343

interpretability. 344
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Materials and methods 345

Dataset 346

N=37 healthy college students from Southwest University in Chongqing (male: 17; 347

female: 20) were enrolled in the study. Inclusion criteria included: no addiction to 348

tobacco or alcohol, no substance abuse, no coffee or other functional drinks in the week 349

before the experiment; no history of neurological or psychiatric diseases; participants 350

needed to have a nap habit (> 4 /week and each nap lasting for > 30 min); a regular 351

work and rest schedule maintained for 1 week before the experiment (the time to fall 352

asleep no later than 00:00 hours [midnight], the time to wake up between 06:30–08:00 353

hours, and a total sleep duration of ( 6.5–8 hr); no day–night reversal behaviour; and 354

no crossing time zone behaviour. The subjects completed the Stanford Sleepiness Scale 355

(SSS) and Karolinska Sleepiness Scale (KSS) before nap. Then the subjects had their 356

EEG electronics connected and then took a nap. About 90 min later, the experimenter 357

awoke the subjects and instructed them to complete the scale package (SSS and KSS) 358

one more time, and then again 30 minutes after waking up. Due to a partial lack of sleep 359

scales report, data from N=19 subjects were finally included. The study was approved 360

by the Ethics Committee of the Southwest University. 361

EEG recordings 362

The experiment used a 63 Ag/AgCI electrode cap (Brain Products GmbH, Gilching, 363

Germany) based on the extended 10-20 international electrode position system. Two 364

additional electrodes were used as reference and ground, and the online reference was 365

Fcz The electro-oculogram (EOG) was recorded using two electrodes, one electrode 366

below the left eye and the other outside the tail of the right eye. The EEG signal was 367

recorded with a sampling rate of 500 Hz. Before the experiment, it was ensured that 368

impedance were < 5kΩ for all electrodes. 369

The central-occipital electrode (Oz) was selected as it reliably captures the prominent 370

alpha-band (8-12 Hz) activity, then a 0.5 - 30 Hz band-pass filter (4-order Butterworth 371

zero-phase filter) was applied, serving as anti-alias filter and removing high-frequency 372

artifact. After that, the signal was down-sampled down-to 100 Hz. To transform the 373

signal to time-frequency space, we used the analytic (complex) Morlet wavelet (cmor1-1.5: 374

band-width parameter = 1; center-frequency = 1.5 Hz), with defined frequency range of 375

interest to span 0.5 Hz up to 20 Hz, and subdivided that interval into 200 equally-spaced 376

frequency bins. This wavelet-based time-frequnecy representation prepared for the 377

embedding extraction procedure. 378

SOP window definition 379

From each individual participant’s EEG wavelet spectrum, we identified the time window 380

in which the participant transitions from wakefulness to sleep by examining the ratio of 381

delta-band (0.5–4 Hz) ampδ to alpha-band (8–12 Hz) amplitudes ampα. The start of 382

transition (tstart) was defined as the earliest continuous block of time where ampδ

ampα
> 1 383

for more than one minute. The end of transition (tend) was identified as the earliest 384

continuous block of time where ampδ

ampα
> 1 for more than two minutes. We then defined 385

the SOP window as [tstart−200s., tend+200s.]. Within this window, we labelled the first 386

1 minute as “wake” and the last 1 minute as “sleep”. Although this definition is entirely 387
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heuristic, we used it consistently across all individuals. All individual embeddings can 388

be found in the (Fig 2-right). 389

Embedding extraction 390

Using the SOP window, we then construct a generalized, low-dimensional representation 391

µ(t) of the SOP spectrogram by computing the singular value decomposition (SVD) of 392

the time-frequency (TF) representation separately in the ”wake” and ”sleep” segments 393

to obtain the first principal modes, U1
w and U1

s . We then generate the embedding µ(t) by 394

projecting the spectrogram on U1
w −U1

s . To do so, we first normalized each spectrogram 395

bin in the SOP window to the unit norm, then projected onto (U1
w − U1

s ) to obtain a 396

scalar µ(t). To scale the µ(t) to the same range of model output, a linear transform 397

(2× µ(t)− 1) was applied. Finally, we applied a mild gaussian-window smoothing and 398

down-sampling by a factor of ten to discard high-frequency noise that the model not 399

intend to explain while improving the computational efficiency. 400

Conversely, to project state-space dynamics back into observation (EEG) space, we 401

reconstruct a low-rank spectrogram using the linear interpolation (µ(t)U1
w+(1−µ(t))U1

s ) 402

(Fig 2a-bottom). 403

Model Structure 404

To model the low-dimensional dynamics µ(t), we propose a minimally-parameterized 405

first-order model of the form given in Eq. 2, which we reproduce here for convenience: 406

dxt = −
(
xt + 1

) (
xt − β(t)

) (
xt − 1

)
dt + σ dWt,

β(t) = tanh
(
α (t− t0)

)
.

(2)

The system has by construction two stable fixed points at x = ±1 and a single 407

unstable fixed point whose location is determined by the time-varying parameter β(t). 408

β(t) is modeled as a slowly-drifting hyperbolic tangent function, with α controlling the 409

speed of its changing rate, and t0 dictating its tipping point. 410

Parameter Inference 411

The macroscopic embedding we extracted µ0:N is assumed to be the latent trajectory 412

generated from stochastic dynamical system (SDE) corrupted by additive gaussian 413

observation noise: 414

µi = xi + ηi, ηi ∼ N
(
0, σ2

obs

)
. (3)

The latent state x0:N itself evolves according to the cubic SDE (Eq. 2), with drift 415

parameters θdrift = (α, t0) and diffusion parameter θdiff = σ. The EEG recordings and 416

the simulator don’t necessarily share the same physical clock: the effective sampling 417

may be slower or faster than the nominal integration steps used in the SDE step. We 418

therefore introduce a time-scale factor, t⋆ = ε t, which stretches (ε > 1) or compresses 419

((ε < 1) the model time axis so that the latent state can align with an unknown true 420

time-scale of experimental data. Hence, all unknowns are therefore collected in Eq. 4: 421

θ =
(
θdrift, θdiff, ε, σobs

)
= (α, t0, σ, ε, σobs). (4)
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According to Bayes’ rule, the joint posterior density function over parameters and latent 422

path is proportional to 423

L̃(θ,x) = log π(θ) +
N∑
i=0

logN
(
yi | xi, σ

2
obs

)
+

N−1∑
i=0

logN
(
xi+1

∣∣∣ xi + ε f(xi; θdrift)∆t, (θdiff
√
ε)2 ∆t

)
, (5)

where π(θ) is the joint prior, and f(xi; θdrift) = −(xi − 1)(x − βi)(xi + 1), βi = 424

tanh(αε(ti − t0)) 425

The three parameters we are interested in are {α, t0, σ}. For α, its prior is set 426

to a half-normal distribution with unit standard deviation (αprior ∼ N+(0, 1)). This 427

forces the fitting procedure to emphasize small alpha regimes, for the two following 428

reasons: first, the timescale of hyperbolic tangent function is inversely proportional to 429

α, which means its changing rate is mostly sensitive to the change of α when it’s small, 430

and unidentifiable for large α (Fig 6-d). Second, it’s a reasonable assumption that the 431

slow drive (a combination of homeostatic pressure and circadian rhythm) evolves in 432

a relatively slow scale. The prior of t0 is set as normal distribution, t0prior
∼ N (5, 1) 433

(simulated case) or t0prior ∼ N (N2 ,
N
4 ) (experimental data). Only three t0 values were 434

tested in simulated case, because, first, defining highly standardized initial time across 435

subjects is difficult in practical real-data settings and, second, increasing the number of 436

distinct t0 values further increases a lot of computational cost by requiring more loops. 437

The prior distribution of σ was σprior ∼ N+(0, 2) in both simulated and real data to force 438

MCMC only sample the positive values with a relatively broad range. The prior of the 439

time-scale factor, ε, is set as a uniform distribution, εprior ∼ U(0.1, 5), which allows the 440

fitted dynamics to be up to ten times slower (ε = 0.1) or five times faster (ε = 5) than 441

the EEG step size. The lower bound prevents numerical stiffness, while the upper bound 442

still covers all physiologically plausible transition speeds encountered across individuals. 443

For observational noise, we assumed a Gaussian observation noise: σobs ∼ N (µ, std), 444

where µ is given by the latent state simulated from SDE. In the simulated case, std is 445

set as 0.00001 to force the latent state trajectory simulated in MCMC to match the 446

observed simulated trajectory almost exactly. In the real data case, std ∼ N (0.1, 0.4) to 447

allow the latent states to differ from the observed data and adapt to potentially different 448

noise-levels to different individuals. The detailed parameter settings can be found in 449

Tables 1–2 (simulated data) and Table 3 (experimental data). 450

Table 1. Fixed–landscape scenario: simulation settings and priors.

Specification Value(s) Prior

Number of trajectories 30

Initial state X0 0

Unstable fixed-point location β [−0.8:0.2:0.8] N (0, 1)
Noise σ {0.2, 0.5, 1.0} N+(0, 2)

Model evaluation 451

In simulated settings, we use Spearman’s rank correlation coefficient to evaluate the 452

fitting performance for α, as the goal is not accurately capturing the true value, but 453

consistently differentiating its order. 454
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Table 2. Time-varying landscape scenario: simulation settings and priors.

Specification Value(s) Prior

Number of trajectories 30

Initial state X0 1

Slope α
[log10space(log2(0.05), 1, 10)

[1.5:0.5:3]]

N+(0, 1)

Onset t0 [4, 5, 6] N (5, 1)

Noise σ [0.2, 0.5, 1.0] N+(0, 2)

Table 3. Priors adopted for real EEG data.

Parameters Prior

α N+(0, 1)
t0 N (N2 ,

N
4 )

σ N+(0, 2)
ε U(0.1, 5)
σobs N+(0.1, 0.4)

For real EEG data, since we don’t have access of the true value, and model is 455

stochastic, wee applied posterior predictive check to compare between what the fitted 456

model predicts and the actual observed data via running forward simulation of 4000 457

trajectories from the joint posterior distribution and selected the one with minimal 458

Root Mean Square Error (RMSE) value as well as the one maximizing joint posterior 459

density, then plot its time course and corresponding reconstructed time-frequency plot 460

to compare with the SVD embedding, taken as ground truth. 461
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Supplemental Material

Zhenxing Hu, Manaoj Aravind, J. Nathan Kutz, Jean-Julien Aucouturier

A Validation of the SOP window across 19 subjects

For every participant, we defined a Sleep Onset Period (SOP) by detecting the transition
from wakefulness to sleep in the continuous EEG spectrogram, following the heuristics
described in the Methods section.

Fig 9. Spectrogram-based validation of SOP windows. EEG wavelet spectrogram
for the 19 participants. Each panel corresponds to one subject (sub1–sub19); the y-axis
spans 0−15 Hz and the x -axis shows time. The two shaded regions mark the first one
minute (“wake”), and the last one minute (“sleep”), which are used as modes for the
embedding. The central, unshaded block is the analysis window. Black vertical bars
mark the (possibly identical) time points tstart, tend used to define the analysis window:
[tstart - 200s., tend + 200s.]. Across all individuals, the heuristic ratio ampδ/ampα
aligns well with the qualitative drop in α-power and rise in θ & δ-power, confirming the
robustness of the SOP definition

B Affine link between µ(t) and V2

Notation and dimensions.

• M ∈ RF×T — raw spectrogram (F frequency bins, T time points);

• D ∈ RT×T — diagonal, Dtt = ∥M·,t∥−1
2 (each column of M is rescaled to unit ℓ2

norm);

• M̃ := MD ∈ RF×T — normalised spectrogram;

• U ∈ RF×F , V ∈ RT×T , Σ = diag(σ1, σ2, . . . ) — singular-value decomposition
(SVD) of the raw matrix M :

M = U ΣV ⊤. (S1)
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Fig 10. Comparison between SVD modes. For every participant, the difference

between the first left singular vectors extracted from wake-only (U
(1)
w ) and sleep-only

(U
(1)
s ) spectrogram blocks (blue) closely matches the second left singular vector of the

full raw spectrogram, U2 (orange).

• U
(1)
w , U

(1)
s ∈ RF×1 — first left singular vectors estimated on wake-only and sleep-

only segments;

• ∆u := U
(1)
w − U

(1)
s ∈ RF×1.

Projection that defines µ(t). For every column of the normalised spectrogram we
project onto the direction ∆u:

µ(t) =

〈
M̃·,t − U

(1)
s , ∆u

〉
∥∆u∥ 2

2

, t = 1, . . . , T. (S2)

Gathering the scalars into a row vector µ⊤ = [µ(1), . . . , µ(T )] ∈ R1×T gives

µ⊤ =
∆u⊤MD

∥∆u∥ 2
2

− ∆u⊤U
(1)
s

∥∆u∥ 2
2

1⊤ . (S3)

Empirical rank-2 structure. Fig. 10 shows that the second frequency mode of M
coincides with ∆u for most subjects:

∆u ≈ U2, where U2 is the second left singular vectors of U. (S4)

Action of U⊤
2 on the MD product. Left-multiplying (S1) by U⊤

2 and right-
multiplying by D yields

U⊤
2 MD = U⊤

2 U ΣV ⊤D = σ2 V
⊤
2 D, (S5)
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Affine relation between µ and V2. Substituting (S4) into (S3) and then invoking
(S5) gives the explicit affine map

µ⊤ ≈ σ2

∥∆u∥ 2
2︸ ︷︷ ︸ V ⊤

2 D +
(
−∆u⊤U

(1)
s

∥∆u∥ 2
2

)
︸ ︷︷ ︸ 1⊤ , (S6)

Equation (S6) confirms that the one-dimensional embedding µ(t) and the right
singular vector V2 (after the column-wise normalisation encoded by D) contain the same
information up to a fixed scaling a and offset b.

C Posterior predictive analysis: minimal-RMSE tra-
jectory and KL/RMSE summaries

Fig 11. Example posterior draw with minimal RMSE. For each subject we ran a
MCMC inference over the model parameters and generated 4000 posterior predictive
trajectories xsim(t) from the joint-posterior distribution. The orange line in every panel
shows the simulated trajectory with the smallest root-mean-square error (RMSE) to the
embedding µ(t) (blue)
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Fig 12. Distribution of KL-divergence and RMSE over posterior samples.
Posterior predictive checks were performed by forward simulation of 4000 trajectories
from joint posterior distribution per participant and computing two complementary
metrics: Kullback–Leibler (KL) divergence between the µ(t) and simulated trajectories
(green, left axes) and point-wise RMSE (blue,right axes). Dashed vertical lines indicate
the median of each distribution. For all subjects the bulk of the KL values lie below
0.16 and RMSE clusters around 0.8, confirming that a large portion of parameter draws
generates trajectories statistically close to the data. Together with the illustrative
trajectories in Fig. 11, these metrics demonstrate the overall adequacy of the inferred
model.
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