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ABSTRACT

The ability to detect social contingency, i.e. recognizing a specific be-
haviour as the social consequence of another, is believed crucial in the
development of social cognition as a mechanistic prerequisite for abil-
ities such as joint attention, turn-taking and theory of mind (Frith and
Frith, 2012). Yet, while the related ability for perceiving biological mo-
tion in a single individual is now relatively well-understood (Neri et al.,
1998), questions remain about how the brain infers temporal causality of
socially meaningful motion in two-person interactions: what exact tem-
poral prediction, of which specific expressive signal, has to break down
before the observer of a social interaction decides that the interaction isn’t
quite right?

In this thesis, we develop the concept of a ’social transfer function’ —
a cognitive representation that, we propose, allows observers of interac-
tions to predict how speech signals will influence facial backchanneling
over time. Operationalized using simple algorithms adopted from the
system-identification literature, these social transfer functions provide a
computational model of what constitutes social contingency. We show
that 1) observers can reliably discriminate between genuine and manipu-
lated contingent behaviour even when stimuli are severely degraded and
2) they causally rely on the link between a speaker’s speech and signals
from a listener’s mouth and eye regions. Furthermore, we characterize
observers’ internal representations of contingent smiles in response to
speech as social transfer functions and, using reverse correlation, extract
them in a data-driven manner. We conclude that social transfer functions
can be used to operationalize third-party observers’ internal representa-
tions of social contingency, such that they can be learned from data, make
predictions and can be tested quantitatively. This work opens up new
avenues for research by quantifying conversational dynamics and grants
the ability to investigate these dynamics across different conversational
contexts, cultures and in disorders affecting communication like autism
spectrum disorder.
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RÉSUMÉ

La capacité à détecter la contingence sociale, c’est-à-dire à reconnaître
qu’un comportement est la conséquence sociale d’un autre comporte-
ment, est considérée comme cruciale dans le développement de la cog-
nition sociale. En effet, cette capacité est un mécanisme nécessaire pour
des fonctions cognitives telles que l’attention conjointe, la tenue de tour
de parole ou la théorie de l’esprit (Frith and Frith, 2012). Cependant,
alors que les mécanismes qui permettent de reconnaitre une agentivité
biologique dans le mouvement d’un seul individu sont désormais rela-
tivement bien compris (Neri et al., 1998), nous savons encore très peu sur
la manière dont le cerveau perçois la causalité temporelle socialement
significative dans les interactions entre deux personnes : quelle exacte
prédiction temporelle, de quel signal expressif précisément, doit être ré-
futée pour que l’observateur d’une interaction sociale décide qu’elle n’est
pas tout à fait correcte ?

Dans cette thèse, nous développons le concept de «fonction de trans-
fert sociale », une représentation cognitive qui, nous le proposons, per-
met aux observateurs d’interactions de prédire comment les signaux d’un
agent influenceront le backchanneling de l’autre agent au fil du temps.
Opérationnalisées à l’aide d’algorithmes simples tirés de la littérature
automaticienne sur l’identification des systèmes, ces fonctions de trans-
fert sociales fournissent un modèle computationnel de ce qui constitue la
contingence sociale. Nous montrons que 1) les observateurs peuvent dis-
tinguer de manière fiable les comportements contingents authentiques
des comportements manipulés, même lorsque les stimuli sont fortement
dégradés, et 2) qu’ils s’appuient de manière causale sur le lien entre
la parole d’un locuteur et les signaux provenant de la bouche et des
yeux d’un auditeur. En outre, nous caractérisons les représentations in-
ternes des observateurs des sourires contingents en réponse à la parole
comme des fonctions de transfert sociales et, à l’aide d’une technique de
"corrélation inverse", nous les extrayons de façon purement "basée don-
nées". Nous concluons que les fonctions de transfert sociales peuvent être
utilisées pour opérationnaliser les représentations internes de la contin-
gence sociale des observateurs, qu’elles peuvent être apprises à partir de
données, et qu’elle permettent de faire des prédictions qui peuvent être
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testées quantitativement. Ce travail ouvre de nouvelles perspectives de
recherche en quantifiant la dynamique conversationnelle et permet ainsi
d’étudier comment cette dynamique est modulée dans les troubles affec-
tant la communication, tels que les troubles du spectre autistique, ainsi
que dans différentes cultures et différents contextes conversationnels.

4



ACKNOWLEDGEMENTS

First of all, I would like to thank my doctoral advisors, JJ and Pablo, for
their unwavering support throughout the PhD and the words of encour-
agement despite the (many) mistakes I made. JJ made this PhD an unex-
pectedly stress-free experience by being there for it all, from small things
like helping draft emails to big things like preventing nervous break-
downs before presentations (and reviewing the thesis manuscript at 2
in the morning while on summer vacation). Pablo was always available
to help, provided valuable feedback and his overall excitement and en-
thusiasm for the work was infectious.

I am very grateful to my thesis committee for agreeing to review this
work and, through their own research, being an important source inspi-
ration.

My thanks also go to all my past and present colleagues here at
FEMTO-ST – Paul, Aynaz, Coralie, Paige, Zhenxing and Manaoj.

Most of all, I would like to thank my parents and my brother who have
worked hard and sacrificed so much for me to have the opportunity to
do a PhD in the first place.

5



CONTENTS

1 SOCIAL COGNITION . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.1 The nature of social cognition . . . . . . . . . . . . . . . . . 12
1.2 Predictive coding in social cognition . . . . . . . . . . . . . 13
1.3 Development of social contingency . . . . . . . . . . . . . . 15
1.4 Social contingency and psychopathology . . . . . . . . . . 17
1.5 Signals and cues of social contingency . . . . . . . . . . . . 18
1.6 Methods for studying social contingency . . . . . . . . . . 20

2 SYSTEM IDENTIFICATION IN CONTROL ENGINEERING AND
COGNITIVE SCIENCE . . . . . . . . . . . . . . . . . . . . . . . . 25
2.1 System identification . . . . . . . . . . . . . . . . . . . . . . 26

2.1.1 General Formulation . . . . . . . . . . . . . . . . . . 27
2.1.2 Common Model Structures . . . . . . . . . . . . . . 28

2.2 Finite Impulse Response Systems (FIRs) . . . . . . . . . . . 29
2.2.1 Formulation as a Linear Regression Problem . . . . 29
2.2.2 Regularization . . . . . . . . . . . . . . . . . . . . . 30
2.2.3 Assumptions Made by FIR models, in Theory and

Practice . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3 System Identification in Cognitive Science . . . . . . . . . . 31

2.3.1 Reverse correlation . . . . . . . . . . . . . . . . . . . 32
2.3.2 Impulse Responses in Electrophysiology . . . . . . 35
2.3.3 Impulse Responses as Surrogate Models . . . . . . 38

3 OBSERVER PERCEPTION OF SOCIAL CONTINGENCY: CORPUS
ANALYSIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.1 Study 1: Are listeners’ facial expressions alone sufficient

for social contingency perception? . . . . . . . . . . . . . . 43
3.1.1 Materials and Methods . . . . . . . . . . . . . . . . 46
3.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.1.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2 Study 2: Eyes vs. Mouth - Is one sufficient for perceiving
contingency? . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.2.1 Materials and Methods . . . . . . . . . . . . . . . . 56
3.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6



3.2.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . 58
3.3 General Discussion . . . . . . . . . . . . . . . . . . . . . . . 60

4 COMPUTATIONAL INTERLUDE: EXPLAINING ACTION-UNIT
DETECTION MODELS . . . . . . . . . . . . . . . . . . . . . . . . 66
4.1 Explainable AI . . . . . . . . . . . . . . . . . . . . . . . . . . 67
4.2 Reverse Correlation with AU Detection Models . . . . . . . 69
4.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3.1 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.3.2 Reverse-correlation stimuli . . . . . . . . . . . . . . 70
4.3.3 Procedure . . . . . . . . . . . . . . . . . . . . . . . . 73

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.4.1 AU detection models are not always modular . . . 73
4.4.2 Kernels can be used to generate adversarial examples 76
4.4.3 AU detection models do not show systematic gen-

der or ethnicity bias . . . . . . . . . . . . . . . . . . 78
4.4.4 Kernels can quantify the composition of emotions

in terms of AUs . . . . . . . . . . . . . . . . . . . . . 80
4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5 OBSERVER PERCEPTION OF SOCIAL CONTINGENCY (REDUX):
A REVERSE-CORRELATION EXPERIMENT . . . . . . . . . . . . . 87
5.1 Study 1: Extracting observers’ internal representations of

contingent smiles . . . . . . . . . . . . . . . . . . . . . . . . 88
5.1.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.1.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.1.3 Corpus TRF vs. Reverse Correlation Kernel . . . . . 97

5.2 Study 2: So, do observers prefer contingent smiles that
match their internal representations? . . . . . . . . . . . . . 101
5.2.1 Methods . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.2.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6 DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.2 "All models are wrong..." . . . . . . . . . . . . . . . . . . . . 112

6.2.1 Linearity . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.2.2 Time-invariance . . . . . . . . . . . . . . . . . . . . . 113
6.2.3 Context-invariance/Context-specificity . . . . . . . 114

6.3 "... but some are useful" . . . . . . . . . . . . . . . . . . . . 115
6.3.1 Parsimony . . . . . . . . . . . . . . . . . . . . . . . . 115

7



6.3.2 Versatility . . . . . . . . . . . . . . . . . . . . . . . . 116
6.4 Some final thoughts . . . . . . . . . . . . . . . . . . . . . . . 117

8



LIST OF FIGURES

1.1 The still-face experiment . . . . . . . . . . . . . . . . . . . . 16
1.2 Perceptual crossing paradigm and point-light displays . . 21
1.3 Real-time manipulation of smiles using Ducksoup . . . . . 22

2.1 The system identification loop . . . . . . . . . . . . . . . . . 26
2.2 White-noise analysis of retinal ganglion cell activity . . . . 33
2.3 Accessing mental representations of interrogative prosody

by using reverse correlation. . . . . . . . . . . . . . . . . . . 34
2.4 System-identification methods in electrophysiology . . . . 37
2.5 Cortical asymmetries between looming and receding

sounds are explained away by the auditory periphery . . . 40

3.1 Marr’s framework as applied to a dyadic interpersonal in-
teraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2 The “social transfer function" computational modeling
paradigm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 Effect of listeners’ facial expressions on social contingency
perception . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4 The expected facial dynamics of social contingency . . . . 52
3.5 Effect of masking parts of listeners’ faces on social contin-

gency perception . . . . . . . . . . . . . . . . . . . . . . . . 59
3.6 The complex choreography of facial expressions for social

communication . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.1 Examples of facial identities from the 4 different ethnicities 71
4.2 Illustration of stimulus generation for AU explainability . 72
4.3 The reverse correlation procedure for explaining AU de-

tection models . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.4 Reverse correlation kernels show lack of modularity in AU

detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.5 Adversarial examples on Py-feat . . . . . . . . . . . . . . . 77
4.6 Lack of systematic gender and ethnicity bias in Py-feat and

Openface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
4.7 Composition of emotions in terms of AUs . . . . . . . . . . 81

9



5.1 The TRFWarp procedure . . . . . . . . . . . . . . . . . . . . 90
5.2 Example of an experimental trial . . . . . . . . . . . . . . . 93
5.3 Convergence of TRF and Gain kernels . . . . . . . . . . . . 95
5.4 Gain and TRF kernels obtained from the reverse correla-

tion task in Study 1 . . . . . . . . . . . . . . . . . . . . . . . 96
5.5 Bimodality in participant strategies for social contingency

perception . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.6 Comparison of the combined kernel with the AU12 (smile)

TRF obtained in Chapter 3 . . . . . . . . . . . . . . . . . . . 100
5.7 Speech extracts and kernels used in the validation study . 103
5.8 Validation of combined KTRF from Study 1 . . . . . . . . . 105

10



CHAPTER 1

SOCIAL COGNITION

The study of human cognition - how the mind and brain make sense of
the world and of itself - has a rich history of scholarship spanning mul-
tiple disciplines and theoretical frameworks. It has relied on successive
paradigms to understand mental processes, including computational ap-
proaches that viewed the mind as an information processor, symbolic
models that emphasized rule-based representations, and connectionist
frameworks inspired by neural networks (Rumelhart et al., 1986; Varela,
1996). More recently, cognition has come to be regarded from the per-
spective of systems science (Thompson, 2010), which emphasizes the dy-
namic, emergent nature of cognitive phenomena. From this perspective,
cognition can be understood as an emergent property of a system com-
posed of more granular systems such as those underlying perception,
attention, memory and action planning. The study of cognition thus
becomes a mereology, or the study of part-whole relationships (Pessoa,
2023). In other words, the system is understood not only through the
study of each part independently, but also their relationship with each
other and how the interactions between them shape the system.

This is especially apparent in the case of social cognition, where the
systems-science perspective can be used to characterize individuals as
‘systems’, with interactions between them playing a fundamental role in
their development and how they experience the world. While a wealth
of research has deepened our understanding of the cognition of indi-
viduals, understanding how it is shaped by social interactions requires
new methodological approaches that can capture the temporal and dy-
namic nature of social interactions. The work presented in this thesis ad-
dresses this need through the development of ‘social transfer functions’,
drawing from system-identification and control-engineering concepts to
model mental representations of interactional dynamics.
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1.1 The nature of social cognition

Social cognition has witnessed an increase in attention and, as a con-
sequence, has shifted the locus of cognition away from the individual
and towards the dynamic networks formed between individuals through
social interactions (Schilbach et al., 2013; Redcay and Schilbach, 2019).
While social cognition was initially studied in terms of individuals’ per-
ception of social cues, e.g. how an observer decodes emotions from facial
expressions (Jack and Schyns, 2015), modern accounts conceptualize so-
cial cognition as an emergence or synergy of multiple systems with two
dominant accounts: enaction and the ‘we-mode’ theory. According to en-
activists, cognition is a relational process or a way to make sense of the
environment and the world around us by interacting with it, and so so-
cial interactions function as ‘participatory sense-making’ (De Jaegher and
Di Paolo, 2007). Importantly, enactivists argue that social interactions
are autonomous systems that arise from such participatory sense-making
and that they cannot be reduced to the properties and contributions of the
individuals. On the other hand, while the proponents of we-mode agree
with the claim of cognition being irreducible and an interactive relational
process, they reject the idea of social interaction as simply sense-making
but with others. Instead, they argue for the existence of differences be-
tween making sense of the world with others and making sense of others
within the world. They argue that “sociality is not just co-presence" (Gal-
lotti and Frith, 2013), i.e. that social interactions activate cognitive repre-
sentations which are not available in settings involving individual action
or involving other individuals but requiring no intention of acting jointly
and engaging in interactive behaviour. This so-called we-mode encodes
representations that remain latent until a socially interactive context is
encountered, meaning that, despite being a property of individuals, it
cannot be understood in a first-person or isolated context.

Despite differences, both accounts advocate for a greater role for social
cognition in the study of individual cognition, claiming that an account
of perception or cognition which ignores the effects of social interactions
is incomplete (Gallagher, 2009). The claim is supported by an increasing
number of studies showing increased perceptual sensitivity for detect-
ing noisy patterns at locations where perception is shared with another
(Seow and Fleming, 2019) or impaired proactivity of gaze patterns to-
wards the motor target of the other when it is out of the other’s reach
(but within reach of the participants themselves) implying the adoption
of shared spatial representations in social situations that then influence
individual perception (Costantini et al., 2012). For instance, in a dot per-
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spective task, participants tasked with counting the number of dots they
can see in an image of a room with dots on the walls and an avatar fac-
ing one of the walls respond significantly faster when the avatar sees the
same number of dots, i.e. shares the same perspective (Samson et al.,
2010). Such social influence on perception and cognition, also termed
co-perception (Deroy et al., 2024) is theorized to ground the conscious
perception of individuals in an objective shared reality (Frith, 2025).

1.2 Predictive coding in social cognition

While these accounts of social cognition attempt to elucidate the nature
of the social cognitive system, a comprehensive account also requires un-
derstanding the mechanisms of its component systems. Consider a rel-
atively simple dyadic interaction with a speaker and a listener. As the
speaker talks, the listener processes the acoustic features of the speaker’s
speech, which are then promoted to high-level areas of the brain where
the semantic content is parsed. This occurs in parallel with visual pro-
cessing of the speaker’s facial expressions, gaze direction and body pos-
ture (Holler and Levinson, 2019). The incoming multi-modal information
is combined to generate the content of the listener’s response and the ap-
propriate facial cues (for instance, to signal the intention to interrupt) by
recruiting language-production and motor-planning areas. These pro-
cesses also interact with other processes, such as memory and attention,
while still constantly integrating the ongoing stream of information from
the speaker. All of this happens, on average, in under 400ms (Heldner
and Edlund, 2010). How is such large complexity resolved at such dis-
proportionately small temporal scales, given, for instance, latencies in the
order of 600ms for word production alone (Indefrey and Levelt, 2004)?
This apparent discrepancy can be explained by predictive coding, a frame-
work that interprets the perceptual system as a hierarchical generative
model aiming to minimize prediction errors (Rao and Ballard, 1999; Fris-
ton, 2003). Predictions generated internally by high-level areas of the
brain are passed down the cortical hierarchy to low-level sensory areas,
where mismatches between the prediction and the data produce so-called
“prediction errors". These prediction errors then ascend the cortical hier-
archy to modify and improve the model generating the prediction. Pre-
dictive coding eschews the notion of the brain trying to find a mapping
between the external environment and internal states in favour of the no-
tion of the brain attempting to infer the external environment from its
effects on internal states. Perception can thus be thought of as a “con-
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trolled hallucination" (Clark, 2015; Millidge et al., 2021). The illusory na-
ture of the external world or the causes of sensory signals is particularly
evident in the case of social interactions, where the external environment
being modelled includes constructs that are not directly perceptible, like
the mental states and intentions of others. From a predictive coding per-
spective, the small latencies for producing complex behaviours in social
interactions may be facilitated by mental representations of others’ be-
haviour in terms of their beliefs, intentions and knowledge (Koster-Hale
and Saxe, 2013), a capacity referred to as theory of mind (Premack and
Woodruff, 1978). However, this raises the issue of infinite regress: i.e. the
dyadic interaction would require the speaker to model the brain of the
listener and the listener to model the speaker’s brain, in turn implying
that the speaker needs a model of the listener that includes their model
of the speaker and so on ad infinitum.

One solution to this representational problem casts the interacting
agents as coupled dynamical systems (Rulkov et al., 1995), meaning that
if the interacting agents share similar generative models of social be-
haviour then knowing the state of one allows predicting the states of
the other, irrespective of how distinct the state trajectory of each agent
is (Friston and Frith, 2015). Dynamical coupling (or, as Friston calls it,
generalised synchrony) thus reformulates the problem of inferring mental
states of others from their actions to the more tractable problem of infer-
ring our own mental states given some observed action and transposing
them onto the other. With each participant in an interaction minimiz-
ing the prediction error between the self and the other, their generative
models gradually become similar, arguably leading to the development
of mutual understanding (Friston and Frith, 2015; Mayo and Shamay-
Tsoory, 2024). The ability to use the actions of one agent to predict both
the content and temporality of a second agent’s actions, referred to as
‘interpersonal predictive coding’ (Manera et al., 2011), is sensitive to in-
dividual differences as well as small changes in the timing of commu-
nicative actions (Manera et al., 2013, 2011). Casting cognitive processes
in both isolated and social contexts as predictive-coding dynamical sys-
tems has enabled the re-conceptualization of disorders like schizophre-
nia (Fletcher and Frith, 2009; Adams et al., 2013; Okruszek et al., 2018,
2019), alexithymia (Palser et al., 2018) and social anxiety disorder (Ger-
rans and Murray, 2020) (see Smith et al., 2021 for a comprehensive re-
view). Neurodevelopmental disorders affecting communication and so-
cial interactions, such as autism spectrum disorder (ASD) in particular,
have seen predictive-coding flavoured characterizations. For instance,
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studies show a lack of flexibility in processing violations of expecta-
tions and learning from dynamic noisy stimuli in individuals with ASD
(Van de Cruys et al., 2014), as well as a sub-optimal increase in weight-
ing (or precision) of prediction errors generated by bottom-up processes
compared to predictions generated by top-down processes (Haker et al.,
2016), implying a greater focus on the details of the environment or stim-
uli instead of on the high-level meaning conveyed by them.

1.3 Development of social contingency

Apart from demonstrating the versatility of predictive coding as a uni-
fying framework for understanding the mechanisms of perceptual and
social processes in the brain, these findings also highlight one of the
key aspects of social interactions - namely, social contingency or the be-
haviour of one agent contingent upon the behaviour of another. Because
the modelled environment is populated by a dense network of social sig-
nals, often with distinct dynamics (e.g. frequent, rapid blinks contrasted
with the slower unfolding of smiles or nods), developing better gener-
ative models requires efficient extraction of socially relevant cues from
a constant stream of multimodal signals, integrating them with high-
level inferences and producing appropriate responses within millisec-
onds. Isolating the relevant cues and detecting social contingency (from a
predictive-coding perspective, the dynamical coupling between signals),
thus becomes fundamental to social interaction (Coey et al., 2012; Dale
et al., 2013). The facilitatory effect of social contingency in interactions
has been demonstrated by studies showing enhanced comprehension in
individuals listening to dialogues than when listening to monologues
(Fox Tree, 1999; Branigan et al., 2011) and better learning performance
through live lectures involving interactions (and contingency) with the
lecturer compared to pre-recorded lectures (De Felice et al., 2021).

This ability to detect and process social contingency begins to develop
from infancy through caregiver-child interactions, with 2-month-old in-
fants displaying social expectations and awareness of their caregivers as
communicative partners (Rochat, 2001). This is well-established by sev-
eral influential paradigms in developmental psychology, like the ‘still-
face’ paradigm (Fig. 1.1) in which 2-month-old infants display increased
gaze aversion and general negative affect when the caregiver becomes
unresponsive and maintains a neutral expression (Tronick et al., 1978).
In a similar ‘double video’ paradigm, infants again show distress when
interacting with their mothers via a pre-recorded video but not when en-
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Figure 1.1: The still-face experiment. In a seminal study demonstrating
infants’ ability to detect social contingency, when caregivers
engaged in normal interactions with their children suddenly
become unresponsive and adopt a ‘still face’, infants are quick
to perceive this change and display increased negative affect
and gaze aversion.
Figure based on work by Tronick et al. (1978) and adapted from Save the
Children’s Resource Center (2022).

gaged in a genuine real-time interaction (Murray, 1985), suggesting that
they possess the ability to jointly process expressive signals generated by
themselves, the interlocutor, and how they should depend on one an-
other. By 7-9 months, infants in still-face experiments begin to take an
intentional stance and attempt to re-engage their caregivers through ac-
tions aimed at attracting attention (Striano and Rochat, 1999). At ages be-
tween 7 and 12 months, infants also start to represent increasingly com-
plex social concepts, manifesting in preference for pro-social behaviour
(Hamlin et al., 2007), attribution of intentions to others’ actions and pre-
diction of future actions based on those intentions (Kovács et al., 2010;
Brandone, 2015). Older infants at around 24 months also display obser-
vational causal learning (Meltzoff et al., 2012), i.e. learning causality by
observing the behaviour of others and initiating interventions to gener-
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ate similar outcomes. Infants display such learning in a social context
by learning the causal connection between one person shaking an object
and another person producing a marble and subsequently performing
the correct intervention to procure a marble for themselves (Waismeyer
and Meltzoff, 2017). The capacity for understanding cause-effect rela-
tionships is significant because contingency detection is a necessary but
not sufficient condition for developing a sense of agency and attributing
agency to others in the environment (Beier and Carey, 2014). Social cog-
nitive abilities continue to develop through adolescence, with late ado-
lescents performing better than early and mid- adolescents at detecting
contingency or the coordination of dynamic real-time behaviour in inter-
acting dyads (Hermans et al., 2022).

1.4 Social contingency and psychopathology

In developmental psychology, social-cognitive processes are often con-
sidered to be developmentally associated through direct causal links,
such that the processes develop sequentially (i.e. the development of one
process is necessary for the development of the other). This model of
developmental cascade (Masten et al., 2005), combined with the long de-
velopmental course of social competencies, has prompted significant re-
search into connections between dysfunctions of pre-social behaviour in
early stages of life and subsequent social atypicality. Autism, often char-
acterized by disruptions in social interactions, has received particular in-
terest. In studies investigating preferential attention towards biological
motion, arguably a precursor to attributing intentions to others and en-
gaging in typical social interactions, children between 2 and 7 years old
with autism fail to recognize point-light displays of biological motion and
instead focus on non-social physical contingencies in the stimuli that are
ignored by the control group (Klin et al., 2009; Annaz et al., 2012). Chil-
dren with autism also display impaired ability to evaluate and interpret
whether others’ social behaviour is appropriate in a given context (Mazza
et al., 2017), a crucial component of processing social cues and select-
ing appropriate responses, which themselves constitute a significant pro-
portion of the complexity of a socially contingent interaction. Likewise,
adults with high-functioning autism also do not show any significant im-
provement at detecting point-light displays of communicative gestures
over non-communicative gestures, with behavioural evidence pointing
towards impairments in predictive-coding mechanisms as being respon-
sible (Von Der Lühe et al., 2016). Other studies with neurotypical popula-
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tions also demonstrate how social contingency between infants and their
caregivers influences attachment styles later in life. One study shows that
both low and high levels of contingency can lead to insecure attachment
and that there is an optimal level that facilitates the development of a
secure attachment style (Beebe et al., 2010). This is supported by a lon-
gitudinal study showing that children of postnatally depressed mothers
(often characterized by disruption in contingent behaviour) are at sig-
nificantly greater risk of depression (Murray et al., 2011), while another
study shows high gaze focus and indistinguishable affect in both contin-
gent and non-contingent interactions in infants of mothers suffering from
postnatal depression as compared to infants of non-depressed mothers
(Skotheim et al., 2013). The evidence highlights how the socio-cognitive
abilities of children are affected by atypical situations and environments
consisting of disturbed or insufficient social contingency, and how such
deficiencies may cascade into psychopathology later in life (see Happé
and Frith (2014) for a review of atypical social cognition across different
stages of childhood and Matyjek et al. (2025) for a review of differences
in social behaviours in autistic and neurotypical populations).

1.5 Signals and cues of social contingency

Assessing the quantity and quality of social contingency in a systematic
manner first requires isolating the signals and cues that make up a contin-
gent interaction. Despite stereotypical characterizations of speakers and
listeners as active senders and passive receivers, respectively, everyday
conversations require rapid and regular signals from listeners to speak-
ers. To facilitate active contingent interactions, listeners often produce
short, non-verbal and verbal feedback signals called backchannels (Yngve,
1960).

Non-verbal backchannels, including facial expressions, nods and eye
gaze, have begun to receive significant interest. For instance, though
smiles are commonly conceived of as emotional expressions (Barrett
et al., 2019), they also serve a pragmatic purpose by contextualizing se-
mantic content as ironic or humorous (Bavelas and Chovil, 2018). Like-
wise, listeners also produce ‘feedback smiles’, although these are typi-
cally shorter to be unobtrusive (non-feedback expressions in general last
approximately 1s longer than feedback expressions - Jensen, 2015). Like
smiles, nods are also versatile signals whose meaning varies with their
temporal organization (Poggi et al., 2010); slow nods in coordination
at delays of approximately 600ms are thought to be a form of mimicry
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promoting social affiliation, while fast nods are usually employed as
backchannels by listeners to signal engagement or agreement (Hale et al.,
2020). Perhaps surprisingly, even subtle cues like blinks provide feed-
back to speakers, with two types of blinks (short and long) proposed
as serving different purposes. While short blinks occur reliably at the
end of turns where speakers typically look to the listener for feedback,
the more infrequent long blinks provide more high-level feedback like
understanding (Hömke et al., 2017). The duration of blinks is a signif-
icant factor, with a 400ms change in a listener’s blink duration result-
ing in the shortening of the speaker’s response by the order of several
seconds, despite the speaker failing to consciously register the signal
(Hömke et al., 2018). In addition to non-verbal backchannels, interac-
tions also feature verbal backchannels, which are usually broken down
into three categories: non-lexical, phrasal and substantive. Non-lexical
feedback consists of utterances like ‘hmm’ and ‘uh-huh’ and are semanti-
cally meaningless but signal engagement. Phrasal backchannels such as
‘really?’ and ‘are you serious?’, though semantically meaningful, are in-
terpreted as signals of acknowledgement. Substantive backchannels are
the most semantically rich and involve repetition, conversational repair,
summary statements and clarifying questions. Together, these verbal and
non-verbal backchannels help develop a shared grounding between in-
dividuals and create interactions out of “collective monologues" (Piaget,
2005).

Though backchanneling frequencies and the cues from the speaker that
elicit those backchannels vary across individuals (Blomsma et al., 2024)
and cultures (Li et al., 2010), backchannels remain ubiquitous (Heinz,
2003). Due to their semantic simplicity (allowing them to be deployed
and processed quickly and efficiently), they are believed to play a crucial
role in the procedural coordination of interactions by facilitating simul-
taneous speech planning and processing without substantially increas-
ing cognitive load or causing interference (Knudsen et al., 2020). This
is supported by studies showing less backchanneling (both verbal and
non-verbal) in individuals with autism than in neurotypical individuals
(Rifai et al., 2022) and lower frequency and variability in backchanneling
behaviour in dyadic interactions between individuals with autism com-
pared to neurotypical controls (Wehrle et al., 2024).

Backchannels, which are associated with listeners or addressees in an
interaction, also have a counterpart on the speaker’s side: co-speech ges-
tures (Kendon, 1996). But unlike backchannels, co-speech gestures are
tightly coupled with speech in terms of their temporal coordination and
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the information they seek to convey by, for instance, accompanying the
phrase “and it was pushed away" with the forward motion of hands.
Early theories classified such gestures as either self-directed (i.e. for the
benefit of the speaker themself by facilitating lexical access) or listener-
directed (i.e. possessing a communicative purpose) but recent work
shows mimicry of co-speech gestures in face-to-face interactions helps
achieve mutually shared understanding, thereby suggesting that the two
theories may not be mutually exclusive (Holler and Wilkin, 2011).

1.6 Methods for studying social contingency

The near-constant flow of these signals, overlapping in the domains of
time, frequency and function, renders the study of social contingency
rather difficult (Vinciarelli et al., 2009). Perhaps unsurprisingly, methods
for investigating social signals in experimental settings have traditionally
attempted to reduce the complexity of naturalistic social interactions to
a more manageable degree. For instance, in a perceptual crossing exper-
iment, social contingency is distilled down from its multi-modal nature
to a more minimalist setting involving only interaction through haptic
feedback (Auvray et al., 2009). Another common strategy has been to de-
grade stimuli and use point-light displays (i.e. minimal representations
of body movements with a smaller set of landmarks often displayed as
white points on a dark background) to investigate the specific stimulus
properties that facilitate their detection. For instance, one study showed
enhanced visual detection of a target agent within noisy point-light dis-
plays of two agents when they moved synchronously than when they
moved asynchronously (Neri et al., 2006). Another study shows that par-
ticipants are able to discriminate between point-light displays of two mu-
sicians who are either improvising together or playing solo, and that this
ability remains consistent even in the absence of any music or musical
expertise (Moran et al., 2015) (for the related question of recognizing bi-
ological motion in a single body, see Nackaerts et al., 2012). However,
while point-light stimuli allow quantifying the spatial coordination be-
tween interacting bodies and how it correlates with observer decisions,
they do not easily translate to vocal and facial features such as those ob-
served in real-world conversations (Takarae et al., 2021).

To this end, there has been a growing body of research attempting
to develop real-time manipulation of multimodal signals. One review
(Arias et al., 2021) highlights the difficulties associated with manipulat-
ing specific acoustic features in speech and identifies a few constraints
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Figure 1.2: (A) The Perceptual Crossing experimental paradigm. Pairs
of blindfolded participants are placed in separate rooms and
interact in a common virtual one-dimensional perceptual
space. Each participant moves a cursor (an avatar represent-
ing her body) along a line and receives a tactile stimulus to
the free hand when encountering something on the line. Par-
ticipants are asked to click a mouse button when they per-
ceive the presence of the other participant. Apart from each
other, participants can encounter a static object or a displaced
“shadow image” of the partner that is strictly identical with
respect to shape and movement characteristics. Therefore, the
only difference between the partner and their shadow image
is that the former can at the same time perceive and be per-
ceived, i.e., that there can be live dyadic interactions. A solu-
tion to the task has to rely at least partially on performing and
detecting a live interaction.
Figure and description adapted from Auvray and Rohde (2012).
(B) An example of a still image taken from a video point-light
display of a real musician duo in Moran et al. (2015)
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Figure 1.3: Real-time manipulation of smiles using Ducksoup. (A) Face
manipulation examples. Nonmanipulated faces (black) and
the corresponding increased (red frame) and decreased (blue
frame) smile manipulation examples. (B) Schematics of the
experimental paradigm and facial expression analysis. Partic-
ipant 1 nonmanipulated (black frame) face is tracked and ma-
nipulated to increase her smile (red frame). In parallel, partici-
pants’ 2 original facial expression (black frame) is tracked and
manipulated to decrease his smile (blue frame). Participants
only see the manipulated videos of their interacting partners
and not their own (shaded gray box); the bar over the face is to
preserve anonymity. (C) After the experiments, we use video
recordings to extract participants’ manipulated (red and blue)
and nonmanipulated (black) smiling activity over time. Note
that the manipulation only changes the time series on the y-
axis and by a small amount, i.e., the manipulation is a static
shift in smiling activity levels. The horizontal red bar indicates
the moment in the interaction when pictures were taken.
Figure and description adapted from Arias-Sarah et al. (2024).
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for the use of voice transformation algorithms in experimental settings,
with a key one being the ability to generate real-time transformations.
A recent study introduced an online experimental platform called Duck-
Soup for real-time face transformations (Arias-Sarah et al., 2024). The
platform was used to causally investigate the effect of smile manipula-
tions on the emergence of romantic attraction in real-time ‘speed dating’
interactions. The manipulations were either aligned (both smiles were
either increased or decreased) or misaligned (smile of one was increased
while the other’s was decreased) and occurred without the participants’
knowledge (Fig. 1.3). Results indicated that increasing the smile of the
other person caused participants to think that person was more attracted
to them and that increasing the smiles of both at the same time led to
greater attraction between them and increased their perception of the
conversation quality. This paradigm opens up new avenues of research
by going beyond the correlational nature of traditional interaction analy-
ses and circumventing issues related to low ecological validity associated
with virtual avatars. However, the question of how individuals represent
the dynamics of specific social signals remains an open question. For in-
stance, in response to what specific cues and at what latencies does the
perception of a smile shift from being affiliative to signalling romantic at-
traction? Though such tools now allow the manipulation of contingency
in real-time, how specific social signals need to be manipulated to make
them appear contingent remains mostly unknown.
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Roadmap

In this chapter, we cast interacting individuals as coupled systems
attempting to find a shared representation of the world and de-
scribed the dominant theories about how this common ground is
converged upon. Furthermore, we detailed the signals involved
in everyday social interactions and how maladaptive learning and
recognition of those may manifest as psychopathology. Finally, we
highlighted some of the experimental paradigms used to study so-
cial cognition, with recent examples leading to the possibility of
manipulating or even controlling vocal and facial signals in real-
life interactions. However, what appears missing from this state-of-
the-art is a way to quantify how such signals should be controlled
to "illuminate the black box" (Brinberg et al., 2025) of socially con-
tingent dynamics.
In this thesis, we propose using a simple concept from control en-
gineering, the impulse response, to provide a model that is able to
both analyse and synthesize dynamic contingency in social interac-
tions. Impulse responses, or as we call them more generally, "social
transfer functions", operationalize the mechanism of interpersonal
predictive coding in a way that can be used to make experimental
predictions.
In the next chapter (Chapter 2), we will turn to the field of con-
trol engineering and review a few fundamental concepts of system
identification like transfer functions, highlight its growing pres-
ence in cognitive science and elucidate several ways in which it has
already contributed to answering open questions in neuroscience
and cognitive science.
In the remainder of the thesis, we show that social transfer func-
tions allow making predictions of how observers rate social contin-
gency in natural interactions (Chapter 3) and, provided they rely on
appropriate models of facial expressions (Chapter 4), can be used
to probe listeners’ internal representations of contingency (Chapter
5).
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CHAPTER 2

SYSTEM IDENTIFICATION IN CONTROL
ENGINEERING AND COGNITIVE
SCIENCE

The framework of interpersonal predictive coding (Manera et al., 2011) casts
interacting agents as coupled dynamical systems that aim to obtain a
shared representation or mutual understanding of the world. Put sim-
ply, a dynamical system is a system whose state x evolves according to
some specific rule ẋ = f(x). When dynamical systems x1 and x2 are cou-
pled, the state of one system can be used to predict the state of the other
such that ẋ1 = f1(x1, x2) and ẋ2 = f2(x1, x2). However, in an interactive
context, such coupling requires that individuals possess similar internal
representations of interactive dynamics (i.e., social contingency), allow-
ing them to 1) generate appropriate contingent behaviour in response to
incoming stimuli and 2) predict others’ responses and initiate repair or
modulation of signals in case of a mismatch between the actual and pre-
dicted response. While there is a wealth of research, detailed in Chapter
1, documenting the form, frequency and timing of interaction outputs in
response to inputs (e.g. the typical timing of a smile), we lack a mechanis-
tic formulation of the generative mechanisms responsible for those out-
puts (e.g. the precise dynamics of a smile in response to some specific dy-
namics of incoming speech). Such a generative mechanism would allow
for experimental predictions by, for instance, measuring how well the
smiling behaviour in a given interaction matches expected dynamics, as
well as provide a testable cognitive model for how human observers per-
ceive social contingency. One way to build such a model, provided that
one has access to recordings of both input and output signals, is to use
system identification, a class of methods with origins in control engineer-
ing. This chapter presents a brief introduction to system-identification
methods, with a focus on the notion of linear, time-invariant systems and
impulse responses, how they have been used in cognitive science so far,
and how their use in social cognition can help formulate interaction dy-

25



Figure 2.1: The system identification loop, adapted from Ljung et al.,
1987, visualizes the process of calculating a model as involv-
ing many iterations over different sets of candidate models
and the criteria for evaluating them until a model’s properties
can be satisfactorily validated.

namics (i.e. to model interacting pairs as a single system) in terms of a
social transfer function.

2.1 System identification

System identification is an approach to modelling ‘black-box’ systems,
which are characterized by a lack of access to and understanding of their
dynamics, meaning that these systems cannot be modelled (simply, or
at all) using first principles. The system-identification approach, being
data-driven, involves experimenting on the system, observing the conse-
quent input-output relationships and then inferring a model by analysing
those relationships. Not unlike the classical machine-learning procedure,
the process is often characterized by its 4 parts: observed input and out-
put data {u(t), y(t)}t=1...T , a set of candidate models and their parameters
θ, a criterion of fit and the validation of the chosen model. It can thus be
expressed as “finding that model in the candidate set that best describes
the data, according to the criterion, and then evaluating and validating
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that model’s properties" (Ljung, 1998) (Fig. 2.1).

2.1.1 General Formulation

Consider a general input-output dynamical system of the form

y(t) = G(z, θ)u(t) + v(t) (2.1)

where G(z, θ) is the system’s transfer function, y(t) is the measured out-
put signal, u(t) is the measured input signal, and v(t) is a non-measurable
disturbance term. If we make the following assumptions about the sys-
tem:

• stable: G(z) is rational with all poles in the left half-plane

• linear autoregressive: current output depends linearly on a finite
number of past outputs and inputs

• time invariant: if input u produces output y, then a time shift in the
input u(t− τ) produces output y(t− τ)

• finite-dimensional: there exist a finite number of coefficients in in-
put and output

then the system equation can be written equivalently as a finite difference
equation:

y(t) + a1y(t− 1) + a2y(t− 2) + . . .+ aNay(t−Na) =

b1u(t− 1) + b2u(t− 2) + . . .+ bNb
u(t−Nb) + v(t)

(2.2)

While many systems do not satisfy the linear time-invariant (LTI) as-
sumption, typical system identification approaches consider deviations
from this framework as likely being small and, in any case, contami-
nated by unknown disturbance signals which are expected to be captured
by v(t) (i.e. v(t) incorporates both measurement and modelling error).
In a typical modelling framework called prediction-error identification
(Ljung, 1998), the disturbance v(t) is modelled as a zero-mean stationary
stochastic process of the form:

v(t) = H(z)e(t) (2.3)

where H(z) is a (stable, linear, time-invariant, finite-dimensional) transfer
function, and e(t) is zero-mean white noise.
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In order to define sets of candidate models to estimate G(z) and H(z),
a popular way (one adopted by the Matlab System Identification
Toolbox - Ljung, 1995) is to parametrize G(z, θ) and H(z, θ) in terms of
fractions of polynomials in z−1 with the notation z−ku(t) = u(t− k) lead-
ing to the most generic formulation called the Box-Jenkins model (Box
and Jenkins, 1976):

y(t) =
B(z−1)

A(z−1)
u(t) +

C(z−1)

D(z−1)
e(t) (2.4)

where

A(z, θ) = 1 + a1z
−1 + . . .+ aNaz

−Na

B(z, θ) = b1 + b1z
−1 + . . .+ bNb

z−Nb

C(z, θ) = 1 + c1z
−1 + . . .+ cNcz

−Nc

D(z, θ) = 1 + d1z
−1 + . . .+ dNd

z−Nd

(2.5)

where ai and bi correspond to the coefficients in Equation 2.2. In the
following, we refer to the model parameters θ as the set of coefficients
{a1, . . . , aNa , b0, . . . , dNd

}.

2.1.2 Common Model Structures

An important aspect of system identification is to constraint parameters
in G(z, θ) and H(z, θ), leading to a variety of model structures, that are
frequently applied in identification problems. The most important ones
are listed in Table 2.1, by order of decreasing generality. For instance,
the ARX (Autoregressive with Exogenous Input) model structure makes
the assumption that all models in the set have a common denominator in
G(z, θ) and H(z, θ).

The choice for a specific model structure can be based on prior infor-
mation about the process to be modelled (e.g. knowledge about where
disturbance signals enter the system process) but also have practical con-
sequences on the estimation process for θ. As will be described below, in
the particular case of FIR (finite impulse response) models, the parameter
estimation procedure can be formulated as a linear regression problem,
which is very appealing from a computational point of view.
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Model structure G(z, θ) H(z, θ)

Box-Jenkins B(z−1)
A(z−1)

C(z−1)
D(z−1)

ARMAX B(z−1)
A(z−1)

C(z−1)
A(z−1)

ARX B(z−1)
A(z−1)

1
A(z−1)

Output error B(z−1)
A(z−1)

1
FIR B(z−1) 1

Table 2.1: Common model structures used to identify linear time-
invariant systems, listed by decreasing generality. Table adapted
from (Bombois and Van den Hof, 2006).

2.2 Finite Impulse Response Systems (FIRs)

2.2.1 Formulation as a Linear Regression Problem

The FIR model, one of the several possible model structures (Table 2.1),
has the property that the model’s output is a linear function of the un-
known parameters θ = {bk}k=1...Nb

:

y(t) =

Nb∑
k=1

bku(t− k) + v(t), t = 0, 1, 2... (2.6)

A consequence of this linearity is that the least-squares identification cri-
terion defined on the prediction error is a quadratic function in θ (Ljung
et al., 1987). As a result, there is an analytical expression for the optimal
parameter θ0 that minimizes the criterion, which can be obtained using
the classical linear regression procedure, as:

θ = (STS)−1STy (2.7)

S =


u(1) 0 0 · · · 0
u(2) u(1) 0 · · · 0

...
...

... . . . ...
u(T ) u(T − 1) u(T − 2) · · · u(T −Nb)

 (2.8)

where S is a matrix whose columns are the time-lagged versions of the
system’s input u(t) up to the system’s order Nb, y(t) is the actual system
output, and T is the total number of samples collected in the training
data.
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2.2.2 Regularization

The expression of FIR system identification as a linear regression problem
is computationally attractive because it allows incorporating regulariza-
tion terms in the optimization criteria. Standard least-squares linear re-
gression is known to produce unstable/unreliable coefficient estimates
in situations of high dimensionality and multicollinearity (i.e. when re-
gressors are correlated). This situation is typically the case in system-
identification contexts where the independent variables u(t − k) are the
numerous (order Nb) time-shifted samples extracted from an input time-
series. Such cases also typically involve input signals that have their own
internal dynamics and successive samples cannot be considered indepen-
dently and identically distributed (i.i.d.) - providing one reason why clas-
sical system identification procedures use experimental measurements
involving white-noise (Marmarelis and Naka, 1972). In situations where
multicollinearity cannot be avoided (e.g. when identifying systems from
ecological inputs that do not allow easy experimental control over au-
tocorrelation), modern machine-learning extensions to linear regression
(Pillonetto et al., 2014) add a penalty term (also called regularization) to
the least-square loss function, which can, e.g. be proportional to the ab-
solute value (L1 norm):

LossL1 = MSE + λ
N∑
i=1

|wi| (2.9)

or the squared value (L2 norm) of the coefficients

LossL2 = MSE + λ
N∑
i=1

w2
i (2.10)

where MSE is the traditional mean-squared-error term, wi are the co-
efficients (weights) of the model, N is the number of regressors and λ
is a regularization parameter controlling the strength of regularization
typically learned through cross-validation on a separate validation set.
Regression with L1 regularization is also called Lasso regression, and en-
courages sparsity in the model (i.e. some coefficients may become exactly
zero). L2 regularization, also called ridge regression, specifically penal-
izes larger weights and is often preferred in system identification con-
texts (Pillonetto et al., 2014). Apart from these, other machine-learning
extensions are also commonly applied to the problem of estimating FIR
models, such as boosting (a step-wise procedure that increments the wi
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of the variable that’s most correlated with e.g. the current residuals at
that iteration leading to sparse estimates that are perhaps comparable to
Lasso) or subspace pursuit (see Kulasingham and Simon, 2022 for a re-
view and empirical comparisons).

2.2.3 Assumptions Made by FIR models, in Theory and
Practice

In theory, FIR models make some rather unrealistic assumptions about
system behaviour. First, they impose the constraint of linearity. Being a
linear function of the inputs implies that, for instance, doubling the in-
put would double the output. Second, the lack of an A(z−1) term means
that past output has no influence on future outputs, i.e. its input-output
behaviour is time-invariant. Finally, H(z, θ) = 1 means that no parame-
ters are used to model the behaviour or characteristics of the disturbance
term, which is assumed to be independent and identically distributed
(i.i.d).

In practice, however, the non-linear components of a system can be
considered relatively small (e.g. second-order) with white-noise residu-
als capturing their variance reasonably well. Provided with some knowl-
edge of the system, non-linearities can also be added to the input sig-
nal itself (Lindboom et al., 2023). Moreover, extensions to FIR models,
such as regularization and boosting can compensate for some of the sub-
optimal assumptions, particularly in terms of avoiding overfitting to in-
put dynamics and multicollinearity in the regressors. Finally, in the con-
text of cognitive science, the simplicity of FIR models is often helpful for
understanding complex cognitive processes and, on the basis of that un-
derstanding, developing and using more complex models. Importantly,
knowledge of the degree to which cognitive phenomena is captured by
simple, first-order linear approximations is in itself an interesting empiri-
cal question (Marmarelis and Naka, 1972). In the remainder of this chap-
ter, we highlight how FIR models and their variants, despite the strict
theoretical assumptions, have become increasingly prevalent in the study
of cognition.

2.3 System Identification in Cognitive Science

In system-identification terms, the internal representation of a cogni-
tive process can be thought of as a system that can be expressed as
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some combination of experimentally controlled inputs and behavioural
or (neuro)physiological responses as outputs. The goal then is to com-
pute some form of transfer function from the observed data to obtain
a complete characterization of the internal representation, which can be
used to make predictions for novel inputs and thus provide mechanis-
tic control in experimental settings. As seen above, one simple type of
transfer function for system identification is the FIR model, which as-
sumes that a system’s output is the convolution of the input with a fixed
impulse response. Although FIR models make strong and often theoreti-
cally unrealistic assumptions about the system (notably, time-invariance),
their formulation as a linear-regression problem makes them both com-
putationally attractive and, in practice, a reasonable option for high-
dimensional, noisy phenomena such as those encountered in behavioural
or neurophysiological data.

2.3.1 Reverse correlation

One of the most common system-identification techniques in cognitive
science is reverse correlation, based broadly on the principle that noise
can be used to study black-box systems (Wiener and Masani, 1958).
Reverse correlation has its origins in neurophysiology, where it was
used to study biological systems by characterizing sensory neurons as
stimulus-response transducers driven by external stimulation. In a land-
mark study, catfish retinal neurons were probed using Gaussian white-
noise modulated light intensity stimuli with the resulting neuronal spikes
recorded as output (Marmarelis and Naka, 1972). Random stimuli that
elicited a response were averaged to derive Wiener kernels (essentially
impulse responses; Schetzen, 2006), which could be used to make quan-
titative predictions about the behaviour of the neurons (Fig. 2.2). Other
studies investigating neurons in the visual cortex of non-human animals
utilized reverse correlation to estimate neuronal receptive fields by cross-
correlating Gaussian white noise inputs with the corresponding outputs
(Reid and Shapley, 1992; DeAngelis et al., 1993; McLean et al., 1994). A
similar study reduces the dimensions of the input space to obtain signif-
icantly improved signal-to-noise ratio by replacing Gaussian white noise
stimuli with inputs sampled from a sub-space constructed based on a pri-
ori knowledge of cell properties (Ringach et al., 1997). This modification
is particularly important in the context of the adoption of reverse correla-
tion in psychophysics, where highly noisy stimuli and a large number of
trials both often have a detrimental effect on the behavioural responses
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Figure 2.2: White-noise analysis of retinal ganglion cell activity. A
block diagram depicting the main signal-flow pathways in the
vertebrate retina and a light stimulus with the resulting gan-
glion cell response. Other stimulus-response pairs can be cho-
sen experimentally (after Marmarelis and Marmarelis, 1978).
Figure and description adapted from Marmarelis (2004).

of human participants.
In psychophysics, the reverse correlation procedure usually involves a

2-alternative forced-choice task to avoid bias and record binary partici-
pant responses to hundreds of pairs of randomly perturbed stimuli. At
the end of the reverse correlation procedure, the average noisy stimuli
chosen by the participant is used to compute a model called the classi-
fication image, which shows the stimulus features that drive behaviour.
While dynamic stimuli with continuous inputs and outputs are modelled
as impulse responses based on the framework described in the previous
sections, binary outputs reduce the system equation to a simple scalar
product between the input and the model. In this case, rather than an
impulse response, the model is considered a template or a classification
image that represents what the input should look like in order to generate
a response. Corresponding to the description of impulse responses, this
linear observer model assumes linearity, time-invariance (i.e. the same tem-
plate is always used so that a given input always yields the same output)
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Figure 2.3: Accessing mental representations of interrogative prosody
by using reverse correlation. To validate the paradigm used
in this study, we examined prosodic prototypes related to the
evaluation of interrogative vs. declarative utterances. (Left)
Utterances of the same word “vraiment” (“really”) were digi-
tally manipulated to have random pitch contours c(n). Partici-
pants were presented pairs of manipulated words and judged
which was most interrogative. (Right) Prosodic mental repre-
sentations, or prototypes, were computed as the mean pitch
contour of the voices perceived as interrogative (“really?”),
minus those judged declarative (“really.”). As predicted, the
prototypes associated with interrogative judgments showed a
clear pitch increase at the end of the second syllable, which
was observable both in averaged and in individual proto-
types. amp., amplitude.
Figure and description adapted from Ponsot et al. (2018).
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and contains a noise term representing the ‘internal noise’ of the system.
Psychophysics studies have applied reverse correlation to investigations
of internal representations of more high-level cognitive processing. For
instance, one study reverse correlates random perturbations of the spec-
tral features of the vowel [a] to extract internal representations of smiling
speech (Ponsot et al., 2018). Another study with random pitch profiles of
the word “Hello" demonstrates that the internal representation of trust-
worthiness in speech is characterized by low average pitch that increases
towards the end of the utterance, while that of dominance is character-
ized by even lower average pitch that decreases at the end (Ponsot et al.,
2018). In the visual domain, studies using reverse correlation (or its par-
ent method called ’bubbles’ - Gosselin and Schyns, 2001) highlight the re-
gions of the face driving judgements of trustworthiness and dominance
(Dotsch and Todorov, 2012), internal self-representations of individuals
and how they correlate with personality traits like self-esteem (Moon
et al., 2020; Maister et al., 2021), and the cultural differences in internal
representations of emotions (Jack et al., 2012).

2.3.2 Impulse Responses in Electrophysiology

Over the years, system identification techniques have received increas-
ing attention from researchers using methods like fMRI and, in particu-
lar, electroencephalography (EEG). The marked interest in applying sys-
tem identification to EEG is driven in large part by the limitations of
traditional analysis methods like event-related potentials (ERPs; Handy,
2005). Traditional ERP analysis segments EEG signals into epochs that
are time-locked to many identical repeats of the same stimulus, and av-
erages them. One limitation of this method is that it is predicated upon
the assumption that stimuli are presented almost instantaneously, as in
the case of image stimuli. When this assumption holds, the time-locked
ERP can be thought to directly reflect the sequence of cognitive events
triggered by the stimulus in the form of successive electrophysiological
components (N1, P2, P3, etc.). However, when the stimulus itself extends
over a non-negligible period of time and overlaps with the timings of ERP
components (e.g. measuring P300 time-locked to the onset of a 1-second
sound recording, Benghanem et al., 2024), the measured output is best
thought of as a continuous integration (or convolution) of the ongoing
stimulus with some unknown to-be-determined component.

Relatedly, ERP analysis also forces stimuli to be presented as isolated
events, often as sequences with silent inter-stimulus intervals. The need
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for many repetitions of a single stimulus to obtain ERPs means that the
stimuli become less ecological and more importantly, make the result-
ing ERPs less generalizable to other stimuli. Together, these factors limit
the applicability of ERPs for studying a wide range of cognitive mech-
anisms that take continuous streams of information as inputs. For in-
stance, cortical responses to natural continuous speech often overlap in
time and show dynamic tracking or entrainment to acoustic features of
speech (Ahissar et al., 2001; Abrams et al., 2008; Lalor and Nidiffer, 2025),
implying that average ERPs might obscure the precise dynamics of brain
responses. So while ERPs have been invaluable for identifying compo-
nents involved in the processing of sounds and individual words, using
them to investigate the cognitive mechanisms underlying language com-
prehension and processing of continuous speech has proven to be dif-
ficult. For these reasons, alternative methods to ERPs are increasingly
being proposed.

One such method is VESPA (Visually Evoked Spread Spectrum Re-
sponse Potential - Lalor et al., 2008). This method circumvents the need
for repeated presentations of discrete visual stimuli to evoke visually
evoked potentials by instead using random, continuously changing vi-
sual properties as input and corresponding brain signals as output. Us-
ing least squares estimation, an impulse response w(τ) is estimated from
the input-output pairs, such that its convolution with the continuous in-
put signal can then be used to generate the output. Such an impulse
response can be thought of as a generalization of visually evoked po-
tentials, without being restricted by the number of image stimuli that
can feasibly be presented. The counterpart of VESPA in the auditory do-
main, the AESPA (Lalor and Foxe, 2010), also tackles the issue of continu-
ous stimuli by estimating an impulse response from natural, continuous
speech input (specifically, its amplitude envelope) and the corresponding
EEG response (Fig. 2.4A). The ability of these system-identification meth-
ods to handle continuous, dynamic stimuli has allowed the investiga-
tion of more complex cognitive phenomena like the cocktail party effect
(Cherry, 1953). In a seminal study, impulse responses were estimated for
the mapping between neural data of participants simultaneously listen-
ing to 2 different speakers and the amplitude envelopes of each speech
signal (O’sullivan et al., 2015). The impulse responses of attended and
unattended speech were then used to reconstruct the amplitude enve-
lope of each. Results showed that when using the impulse response
of attended speech, the correlation between actual attended speech and
its reconstruction was higher than with unattended speech. Similarly,
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Figure 2.4: (A) The AESPA method. The speech signal is presented to
the subject concurrent to electrophysiological (e.g. EEG) data
being recorded. The amplitude envelope of the speech signal
is calculated by determining the RMS of the audio signal val-
ues occurring in the time frame of each sample of the neural
data. It is assumed that the neural data consists of a convo-
lution of the amplitude envelope of the speech signal with
an unknown impulse response function, plus noise. Given
the recorded data, knowledge of the speech signal and accu-
rate synchronization between the two, this impulse response
function, known as the AESPA, can be estimated using least-
squares estimation.
Figure and description adapted from Lalor and Foxe (2010).
(B) Using system identification to decode selective attention
in a Cocktail Party paradigm. Data from all electrode chan-
nels are decoded simultaneously to give an estimate of the
amplitude envelope of the input speech stream. The corre-
lation between this reconstruction and both the attended and
unattended speech streams is then calculated for each trial.
Figure and description adapted from O’sullivan et al. (2015).
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when using the impulse response of unattended speech, its reconstruc-
tion showed greater correlation with the actual unattended speech than
attended speech (Fig. 2.4B). In another study, similar regression methods
were used to estimate STRFs (spectro-temporal receptive fields) to recon-
struct the auditory spectrogram of Another Brick in the Wall, Part 1 (by
Pink Floyd) from high-frequency activity in intracranial EEG recordings
of participants listening to the song (Bellier et al., 2023). Interestingly,
though these models do not boast particularly impressive prediction ac-
curacies (highest correlations with observed data approximately 0.1 and
0.3 in O’sullivan et al., 2015 and Bellier et al., 2023, respectively), their
ability to handle continuous stimuli and not require a large number of
repeated trials has meant an increase in popularity of FIRs and its many
variants, perhaps reflecting the acceptance of models "guided by useful-
ness rather than truth" (Ljung et al., 1987).

2.3.3 Impulse Responses as Surrogate Models

A more conceptual (rather than methodological) limitation of ERPs is that
while they establish the influence of stimulus characteristics on cortical
responses, it is difficult to draw conclusions about the specific cause or
realizer of the responses. In other words, differences in cortical responses
could either entail different cognitive processes (i.e. caused by differen-
tial cognitive evaluation) or the same cognitive process simply reflecting
the physical differences in the stimuli. This stimulus-to-process infer-
ence problem is somewhat mitigated in studies involving explicit tasks
where behavioural responses are collected in conjunction with ERPs be-
cause they allow the comparison of ERP differences with correspond-
ing behavioural evaluations (Castro et al., 2020; Nussbaum et al., 2022).
However, the problem becomes particularly intractable when investigat-
ing implicit effects, especially in clinical settings involving unresponsive
patients like those with disorders of consciousness (DoCs). For instance,
suppose a comatose patient displays differences in ERPs in response to
speech sounds with varying emotional prosody. Since there is no cor-
responding behavioural evidence, can we conclude that the differential
ERPs are a marker of preserved emotional perception, or do they sim-
ply indicate that observed differences are solely the result of the audi-
tory periphery treating different prosodic patterns as distinct cortical in-
puts? The latter precludes any high-level cognitive differentiation and
confounds subsequent evaluations of patient prognosis. Thus, what is
needed is a way to model responses to different stimuli as if they were
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generated by the same cognitive process, so that a mismatch between
the model’s prediction and the observed data can lend support to the al-
ternative two-process interpretation involving differential cognitive pro-
cessing.

In a project that is somewhat ancillary to the broader theme of this PhD
manuscript, we collaborated with neurologists at Sainte-Anne Hospital
in Paris to address the inference problem by leveraging system identi-
fication using FIRs. We investigated one of the more salient examples
of prioritized auditory processing in the brain, namely, the perceptual
bias towards looming compared to receding sounds. Studies show that
compared to receding sounds, looming sounds are consistently overes-
timated as being louder (Neuhoff, 1998; Ponsot et al., 2015) and faster
(Rosenblum et al., 1987; Schiff and Oldak, 1990) and activate a wider
network of regions subserving auditory spatial perception and attention
(Bach et al., 2008; Seifritz et al., 2002). However, it is possible that evi-
dence for different brain responses could be driven by the dramatically
different temporal profiles of looming and receding sounds, i.e. per the
inference problem, evidence of different outputs does not constitute evi-
dence for different processes.

To address this, we collected EEG data during an oddball paradigm to
elicit ERP-like components in response to deviant stimuli with both dy-
namic (looming and receding) and constant level (flat) differences to the
standard in the same participants (N=18). We then used FIR system iden-
tification with ridge regression (called TRF in the mTRFpy Python pack-
age - Bialas et al., 2023) to model single-participant ERP responses to flat
deviants, and used the model to predict the effect of the same mechanism
on looming and receding stimuli. The idea was that the modelled im-
pulse response was a description of the cognitive mechanism underlying
processing of flat-intensity sounds. Consequently, if sounds with loom-
ing and receding intensities involve different mechanisms, as suggested
by the literature, model predictions for those sounds would be less accu-
rate. Interestingly, we found that the impulse response for flat-intensity
sounds explained 45% and 33% of the variance of observed responses to
looming and receding sounds (Fig. 2.5D). Essentially, cortical responses
to looming and receding sounds were generated by the same cognitive
mechanism as flat-intensity sounds, and the observed differences in their
responses were the sole consequence of their particular physical mor-
phology getting amplified and integrated by peripheral auditory mecha-
nisms. The study was published in Cortex (Benghanem et al., 2024), and
a follow-up study with the same collaborators is in preparation using the
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Figure 2.5: Cortical asymmetries between looming and receding
sounds are explained away by the auditory periphery. (A)
We collect EEG mismatch negativity (MMN) data in response
to deviant stimuli that had either dynamic (looming and re-
ceding) or constant (flat) level differences to the standard.
Top: Waveform and RMS intensity profiles of all stimuli. Bot-
tom: Corresponding simulated auditory nerve response of
the stimuli using a computational model of the inner ear Zi-
lany et al. (2014). (B) Taking the simulated auditory nerve
response of flat-intensity sounds (blue) as input and the cor-
responding ERP difference wave as output, we estimate an
FIR as a description of the cognitive mechanism for processing
flat-intensity sounds. (C) Predictions of this cognitive mecha-
nism for looming (red) and receding (green) sounds are com-
puted as a convolution of the simulated auditory nerve re-
sponse of those sounds with the FIR to show striking simi-
larities between the predictions and observed data (looming:
45%; receding: 33% explained variance). Top: Grand average
of the observed difference waves (deviant minus standard) at
the Fz sensor. Bottom: Predicted difference waves according
to the FIR estimated from flat-intensity sounds. (D) Cluster
permutation tests at the Fz sensor between observed and pre-
dicted responses to flat (blue), looming (red), receding (green)
sounds show no statistically significant differences. (E) Source
localization in the right lateral cortical surface for observed re-
sponses to flat (top), looming (middle) and receding (bottom)
sounds show statistically similar generation of sources.
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same methodology but with prosodic differences in stimuli.

Roadmap

In this chapter, we reviewed the basics of system identification and
highlight how a few of those concepts (e.g. reverse correlation and
FIRs) have been utilized in cognitive science. Armed with the the-
oretical background of social cognition and system identification,
the remainder of the thesis will present work at the intersection of
the two.
In Chapter 3, we attempt to model third-party observers of social
interactions as FIRs and use them to isolate the facial features driv-
ing observers’ perception of social contingency.
In Chapter 4, we use the system identification technique of reverse
correlation to probe machine-learning based black-box models (of
the kind used in Chapter 3 for extracting the signals upon which
our FIRs were modelled). By extracting their internal representa-
tions, we attempt to ‘explain’ the model in terms of the specific
input features responsible for generating some output.
Finally, the experimental work culminates in Chapter 5, where we
combine insights from the preceding chapters and use classical re-
verse correlation on FIRs to obtain third-party observers’ internal
representations of social contingency in a data-driven manner.
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CHAPTER 3

OBSERVER PERCEPTION OF SOCIAL
CONTINGENCY: CORPUS ANALYSIS

In Chapter 1, we reviewed evidence from the social cognition literature
suggesting that the perception of social contingency, and the dynamics
of non-verbal signals in general, relies on interpersonal predictive cod-
ing that is sensitive to, for instance, how facial signals of one can be pre-
dicted by facial or vocal signals of the other (Manera et al., 2013, 2011).
However, there are discrepancies within the existing literature in terms
of available evidence at the computational and algorithmic levels of inquiry
(Marr, 2010). While there is evidence showing which computations are
performed by the social cognition system and why (i.e. at the computa-
tional level), the processes and representations used for those computa-
tions (i.e. at the algorithmic level) remain unclear. In other words, we do
not know if and how people internally represent the coupled dynamics of
interacting agents or how a specific social signal needs to be manipulated
to make it appear contingent.

In Chapter 2, we reviewed a few fundamental concepts of system iden-
tification, a class of methods with origins in control engineering, that al-
low data-driven modeling of input-output systems as parametric trans-
fer functions. While system-identification methods have some history in
cognitive science, notably via the technique of reverse correlation and,
more recently, temporal response functions (?), they have received rela-
tively little attention in the modeling of social cognition.

In this chapter, we introduce a computational modeling paradigm, the
‘social transfer function’, which assumes that observers possess a schema
(or a dynamic representation; Freyd, 1987) of contingent interactions,
conceivably acquired over time by observation and participation, and
which can generate real-time predictions of the temporal dynamics of
one agent’s facial signals in response to the speech of another agent (Fig.
3.2). At the algorithmic level of explanation, we instantiate such a ‘trans-
fer function’ using the temporal response functions (TRFs; ?), which as-
sumes that the system can be represented by an impulse response H that
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is convolved with the input to generate the output (Y = H ⊛ X). When
observing A talking to B, we essentially propose that observers utilize
something akin to pre-trained TRF to generate the likely output of B as
a response to A (in our algorithmic specification, H ⊛ A), and that this
predicted output is then matched against the observed signal to quan-
tify how contingent the interaction appears to be. As noted in Chapter
2, the algorithmic choice of impulse responses/TRFs carries strong as-
sumptions of linearity and time-invariance which should be evaluated
empirically and discussed theoretically. However, while the more gen-
eral computational notion of a “social transfer function” does not neces-
sarily entail such assumptions, we will return repeatedly to the question
of the validity of these assumptions throughout the thesis (see Chapter
6).

To test this mechanism, we analysed a corpus of video recordings of
naturalistic speed-dating interactions, previously recorded by our collab-
orators (Arias-Sarah et al., 2024), and extracted segments from the videos
that were ‘one-sided’ (i.e. where only one person was speaking while the
other just listened and backchanneled). We then created genuine and fake
extracts by replacing the video recording of the real listener with another
in half of the trials. In two successive behavioural experiments (the first
in-lab, N=18; the second, online and preregistered, N=188), human ob-
servers were asked to discriminate genuine vs fake (i.e. non-contingent)
interactions. We investigated whether social transfer functions learned
from the dataset could predict observer performance better than a sim-
pler model based on the average quantity of movement, their ability to
determine the specific facial features used by observers to detect con-
tingency and their ability to predict observer performance when stimuli
were degraded by masking different regions of faces.

3.1 Study 1: Are listeners’ facial expressions alone
sufficient for social contingency perception?

In Study 1 (conducted in the lab), we ask participants to discriminate
between genuine and fake audiovisual interactions assembled from a
dataset of ecological speed-dating conversations, and explore whether
their ratings are consistent with a social-transfer-function-model predict-
ing a listener’s backchanneling cues from a speaker’s speech. It is im-
portant to note that in this study, as well as the rest of this thesis, we use
the term ‘backchanneling cues’ in a low-level perceptual sense to refer to
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Figure 3.1: Marr’s framework as applied to a dyadic interpersonal inter-
action. (a) The levels as represented in Krakauer et al. (2017).
(b) Communication example: A message sender attempts to
share information with a conversational partner while follow-
ing a set of socially constructed rules that govern the interper-
sonal interaction (goal). Here, the interaction partner stands
too close, which triggers a violation between expectation and
actuality, also known as a prediction error (algorithmic real-
ization) that is cognitively processed in the brain and results
in a physical adjustment of the body positioning (physical im-
plementation). (c) Historically, communication research em-
phasizes the computational level of communication phenom-
ena.
Figure and description adapted from Huskey et al. (2020).
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Figure 3.2: The “social transfer function" computational modeling
paradigm. To operationalize how external observers judge
the contingency of a social interaction (A), we propose that ob-
servers possess a schema of contingent interactions acquired
over time by observation and participation (B). In this the-
sis, we model such a ‘transfer function’ using a temporal re-
sponse function (TRF), i.e. a pre-trained impulse response that
is convolved with an agent’s speech signal (C) such that an-
other agent’s response to the speech signal in terms of the
temporal dynamics of their backchanneling cues (D) can be
matched against the transfer function’s real-time predictions
(E) to quantify how contingent the interaction appears to be.
In the following, we investigate whether social transfer func-
tions learned from a dataset of speed-dating interactions can
predict observer performance, as well as the facial features
used to detect genuine and fake interactions.
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the ensemble of visual cues from a listener’s behaviour while a speaker
speaks that is available for a third-party observer to process. We do not
primarily make a distinction between such cues based on their function
(e.g. linguistic or emotional), semantics or underlying generative pro-
cesses (e.g. voluntary or not). Discussion sections in the rest of this thesis
will comment on how our results may depend on such aspects.

3.1.1 Materials and Methods

Speed Dating Corpus

Stimuli used in this work were extracted from a corpus of video record-
ings of naturalistic speed-dating interactions, which was collected as part
of an earlier project (Arias-Sarah et al., 2024). N=31 French-speaking par-
ticipants (male=15; mean age=22 [20-27]) were part of the dataset col-
lection. All participants were heterosexual, single, and were willing to
participate in a real speed-dating experiment where they would have the
option to potentially connect with their partners at the end of the experi-
ment.

Participants were paired into M/F dyads such that each male inter-
acted with each female participant within that session. Each dyad had a
4-minute conversation over a video-conferencing platform, while seated
in a windowless cubicle. The conversations were entirely unscripted: We
instructed participants to talk about any conversation topic they wanted
with their interacting partner for the whole duration of the interaction.
We equipped participants with Beyerdynamic DT770 pro headphones
and recorded all interactions with Logitech C920 webcams at 30 frames
per second. We organized data collection in batches of eight partici-
pants. For each batch, four males and four females interacted with each
other, following a round-robin design (Kenny et al., 2020). We collected 4
batches of 8 participants in total. One female participant was absent from
one of the sessions. Thus, we collected a total of 60 interactions from 31
different participants.

The dataset collection was approved by the Institut Européen
d’Administration des Affaires (INSEAD) IRB. In accordance with the
American Psychological Association Ethical Guidelines, all participants
gave their informed consent and were debriefed and informed about the
purpose of the research after the experiment.
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Stimuli

From recorded conversations in the Speed Dating corpus, we extracted
n=305 segments lasting around 10 seconds (M=10.01 [5-26]) in which only
one person was talking while the other was silent and only displayed
backchanneling cues like nods, smiles and blinks. ‘Fake’ interactions
were created by pairing the recording of the original speaker with that
of another listener, i.e. not the listener the speaker was actually talking
to. This resulted in n=198 extracts (99 genuine and 99 fake).

Finally, for each genuine and fake interaction, we created 3 presenta-
tion ‘modalities’ of the same extract: one audio-video (thereafter: A-V) in
which the speaker could be heard but not seen (i.e. their video recording
replaced by a black screen), and the listener could be seen but not heard
(i.e. their audio recording replaced by silence); one video-video (V-V), in
which both the speaker and the listener could be seen but not heard; and
one audiovisual-video (AV-V) in which the speaker could be seen and
heard while the listener could only be seen (Fig. 3.3).

Participants

N=18 (male=14; M=25.8, SD=10.04) native French speakers participated
in the study. Participants were recruited from the Master’s program at
SUPMICROTECH (Besançon, France).

Procedure

Participants were presented with 3 blocks of 66 video trials, each block
containing trials from one of the A-V, V-V and AV-V modalities. Blocks,
and trials within blocks, were presented in random order, with short self-
paced breaks in between. No interactions were repeated, meaning that a
given extract did not have a genuine and fake ‘version’, i.e. the genuine
and fake extracts were completely separate interactions. After each video
extract, participants were asked to report whether they thought the inter-
action was genuine (1-interval, 2-alternative forced choice). Participant
performance was quantified using the d’ sensitivity index.

Social transfer functions

To model how well genuine/contingent interactions matched a pre-
diction of the temporal dynamics of the listener’s facial responses to
the speaker’s behaviour (speech), we used a combination of automated
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speech/face analysis and the system identification technique of temporal
response functions (TRFs; ?). First, we estimated the time series of per-
ceived loudness from the speaker’s speech in a given interaction, by com-
puting the RMS intensity of the vocal signal on successive 100ms win-
dows and processing it with a computational model of the auditory nerve
(Zilany et al., 2014) designed to reproduce features of loudness compres-
sion of the human auditory system (a technique suggested to improve
TRF modeling in Lindboom et al., 2023 and Benghanem et al., 2024).
Then, we extracted the time series of 11 facial action units (AUs) activ-
ity (AU12: lip corner puller, AU14: dimpler, AU15: lip corner depressor,
AU17: chin raiser, AU23: lip tightener, AU24: lip pressor, AU25: lip part,
AU26: jaw drop, AU28: lip suck, AU43: eyes closed, Pitch: head nods;
i.e. 1 eye, 1 head and 9 mouth-related AUs) from the listener’s video, us-
ing the Py-feat library (Cheong et al., 2023), in such a way that both vocal
and facial time series were synchronized at the same frame rate. Finally,
for every AU, we trained a separate temporal response function (TRF) to
model the transfer function that converts the speaker’s speech into the
listener’s facial behaviour. TRFs were trained only on the subset of trials
corresponding to genuine interactions to model the dynamical relation
between speech and face that is found in ecological social interactions.
The TRFs were trained using the ridge regression method (Section 2.2.2),
as implemented in the mTRFpy toolbox (Bialas et al., 2023).

Once trained, a TRF allows predicting an observer’s facial response (a
time-series of AU intensity or, equivalently, visual occurrence probabil-
ity) to a specific speaker’s speech (a time-series of speech intensity), by
convolving the input speech with the TRF based on the regularities it
managed to learn from the dataset. In any given interaction, the match
between the time-series predicted by convolution with the TRF and the
actual observer’s times series can be evaluated using Pearson’s correla-
tion coefficient r between the two time series.

Statistical analyses

Participant performance was tested for statistical difference from chance
level (d’=0) with one-sample t-tests, and for differences across modalities
(within-participant) with paired t-tests (3 levels: A-V, V-V, AV-V).

To evaluate whether genuine and fake trials physically differed in
terms of how well they matched the prediction of the TRF model, we
compared Pearson correlation coefficients between the predicted and ac-
tual facial AU series (thereafter: TRF fit) between groups of genuine and
fake trials with two-sample t-tests, corrected for multiple comparisons
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across the 11 AUs under consideration.
To evaluate whether TRF fits were computationally sufficient to accu-

rately discriminate genuine and fake trials, we trained a support vector
machine (SVM) classifier with a linear kernel, which took the vector of
11 TRF fits as input and a binary classification of a trial as being gen-
uine or fake as output. The dataset of 198 trials was divided into training
and testing sets. The SVM hyperparameters (C and Gamma) were op-
timized by 5-fold cross-validated grid-search over the training set. The
final model was then trained on the training set, and evaluated using
classification accuracy on the testing set. We tested for statistical signifi-
cance of the resulting accuracy against chance performance (0.5) using a
binomial test. SVM training was implemented using the scikit-learn
Python package. We used SVM weights as a rudimentary but, in the case
of linear kernels, conservative indication of feature importance. (Guyon
and Elisseeff, 2003).

Finally, to test whether the TRF fits of trials predict observers’ de-
cision of genuineness, over and beyond average AU intensity, we
regressed individual observer ratings on each trial (binary: 0/1)
using a generalized (logistic) linear model (GLM) with a ran-
dom effect on the observer (response ∼ TRF fit + intensity +
(1|observer)), where intensity is the AU’s average (i.e. static) in-
tensity over the trial. GLM analysis was performed with the pymer4
package (Jolly, 2018).

3.1.2 Results

Participants performed significantly above chance at discriminating gen-
uine vs fake interactions (d′ =0.53, t(17) = 10.23, p < .001) with a large
effect size (d = 2.46) as measured by Cohen’s d. Performance was
markedly stronger when speaker behaviour was presented with audio
(A-V block: d′ =0.71; AV-V block: d′ =0.68) than in video-only (V-V:
d′ =0.25, smaller than A-V:t(17) = 4.31, p < .001, d = 1.46; and AV-
V:t(17) = 4.11, p < .001, d = 1.27). There was no performance difference
between the A-V and AV-V blocks (t(17) = 0.33, p = 0.74) (3.3). On the
whole, this pattern of results was consistent with the fact that observers
in this task mostly relied on matching the facial features of the listener
with the vocal features of the speaker.

We then tested the hypothesis that genuine and fake trials differed
in terms of how well listeners’ backchanneling dynamics in response
to speech matched TRF predictions of those dynamics. To do so, we
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Figure 3.3: Study 1. Left: Observers were presented audiovisual ex-
tracts from speed-dating interactions in which only one per-
son was talking while the other was silent and only displayed
backchanneling cues. Trials were presented in three possi-
ble ‘modalities’: audio-video (A-V, top) in which the speaker
could be heard but not seen (i.e. their video recording re-
placed by a black screen), and the listener could be seen but
not heard (i.e. their audio recording replaced by silence);
audiovisual-video (AV-V, middle) in which the speaker could
be seen and heard while the listener could only be seen; and
video-video (V-V, bottom), in which both the speaker and the
listener could be seen but not heard. Right: Sensitivity (d’)
over participants was significantly above chance in all modali-
ties, with better performance in A-V and AV-V compared to V-
V. Box-plot marking median values, inter-quartile range (IQR)
and data points within 1.5 IQR.
*** marks statistical significance at the 0.001 alpha level (paired t-tests).
Horizontal bars over the eyes were added in this image to protect the
anonymity of the participants, but were not displayed during the experi-
ment.
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trained individual TRFs that linked the speaker’s speech intensity with
the listener’s backchanneling signals, for every action unit (AU), across
the subset of 99 genuine trials, and then compared the distribution of
TRF fits between genuine and fake trials. Of the tested AUs, genuine
trials had statistically larger TRF fits than fakes along 4 (all of them
mouth-related) of them (AU12: (t(196) = 2.78, p = .008, 0.38), AU25:
(t(196) = 2.62, p = .01, d = 0.37), AU26: (t(196) = 2.63, p = .006, d = 0.39),
AU28: (t(196) = 2.92, p = .02, d = 0.34), as well as for head nods
(t(196) = 2.6, p = .01, d = 0.36). This suggested that the genuine and
fake stimuli in our task indeed differed with respect to how much they
matched pre-learned dynamic predictions of backchanneling, most ap-
parent on listener nods and mouth reactions such as smiling.

To evaluate whether TRF fits were computationally sufficient to ac-
curately discriminate genuine and fake trials, we trained a machine-
learning classifier on the TRF fits of trials as the input features and ‘gen-
uine’/‘fake’ as class labels (see Section 3.1.1). The SVM achieved a classi-
fication accuracy of 58% which exceeded chance performance (50%; bino-
mial n=99, K=57, p=.025). The SVM weights assigned greater importance
to AU12, AU25 and AU26 for discriminating between genuine and fake
trials.

Finally, we tested whether human observers’ behaviour, in terms of
their binary responses, could be predicted by dynamic and static quanti-
ties of motion. Generalized linear models showed statistically significant
relationships between observers’ responses and dynamic TRF fit (but not
their static quantities, i.e. average AU intensity over the trial) for AU25
(β = −0.75, pcorrected < .05) and AU43 (β = −0.78, pcorrected < .05). This
suggests that participants behaved as if they used dynamic prediction for
cues in both the mouth area, as predicted above, as well as the eyes.

Observing the dynamics of the TRFs of the AUs used to discriminate
between genuine and fake contingent behaviour (AU25 and AU43) re-
veals that both TRFs contain strong early negative components around
300ms, and that their peak activations are offset by around 1s, with AU25
peaking early at ∼1s and around ∼2s for AU43. We also see AU43 activity
being inhibited for almost the entire duration of AU25 activation (shaded
area in Figure 3.4).

3.1.3 Discussion

Study 1 investigated observers’ ability to detect contingent behaviour
in dyadic interactions. We manipulated trials such that they contained
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Figure 3.4: The expected facial dynamics of social contingency. Two
temporal response functions (TRFs) allowed statistically sig-
nificant prediction of observer decisions of genuineness,
based on both a mouth- (AU25, lip part, orange) and an eye-
related action unit (AU43, eyes closed, black). Comparison of
these TRFs, or impulse responses (x-axis: time, y-axis: am-
plitude), reveals different expected timings for contingent fa-
cial responses in each of these AUs. Both TRFs contain strong
early negative components around 300ms, but their peak acti-
vations are offset by 1s, with AU25 peaking early at ∼1s and
AU43 peaking around ∼2s. We also see AU43 activity being
inhibited for almost the entire duration of AU25 activation
(shaded area).

52



varying amounts of multimodal signals and found that participants per-
formed above chance in all modalities, with the best results when observ-
ing a speech-to-face configuration. Finally, we tested whether genuine
trials could be recognized, both by humans and machines, based on dy-
namic “transfer-function” predictions of backchanneling and found that
they predicted observer ratings over and beyond what could be predicted
by static quantities of motion, based on the listeners’ mouth and eye ac-
tion units.

The fact that participants performed above chance at the task confirms
that detecting social contingency is a robust human ability, one that is
plausibly used as a building block for higher-level social cognitive func-
tions such as coordination and theory-of-mind (Frith and Frith, 2012).
Observing the absence or asynchrony of interactive responses in a con-
versation could be considered the third-person equivalent of the classic
‘still face’ paradigm of developmental psychology (see Section 1.3), in
which adults interacting with infants are asked to freeze and cease to re-
spond for a set period. It was shown that infants from around 4 weeks
show sensitivity to such disruptions (Happé and Frith, 2014), and it may
therefore only appear logical that adults should also perform well at a
similar task. However, in the present task, the manipulated contingen-
cies were not plain interruptions but rather desynchronized behaviour in
which visual backchanneling from one conversation was paired with an-
other unrelated conversation. The robust sensitivity of adults to such eco-
logical variations suggests that contingency is a graded evaluation built
on cumulative evidence of synchronized or desynchronized behaviour.
It should be noted, however, that the good performance achieved in this
experimental paradigm (mean d’=0.53) should not be taken as a psy-
chophysical measure of sensitivity, as fake interactions were paired “as
found” in the speed-dating dataset, and may vary in terms of the percep-
tual evidence in favour of contingency or the lack thereof. Study 2 will
attempt to replicate these results in a dataset with more controlled task
difficulty.

In our task, participants performed worse in the silent V-V modal-
ity than in the other two and they did not perform more accurately
when provided the speaker’s video (AV-V) in addition to its recorded
speech (A-V). This pattern of results appears at odds with a large liter-
ature suggesting a facilitating effect of multimodal signals in social cog-
nitive judgements such as emotion recognition or mimicry (Krumhuber
et al., 2023). For instance, a study with a similar paradigm investigated
whether multiple modalities in face-to-face dyadic interactions facilitate
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or interfere with language processing (Drijvers and Holler, 2023). To test
this, the authors used 30-second extracts of a speaker talking to their con-
versation partner uninterrupted and presented the trials in three condi-
tions: audiovisual (AV), audiovisual + mouth blurred (AB), and audio
only (AO). Participants were better at shadowing speech when they re-
ceived multimodal signals, suggesting that they had a facilitatory effect
and did not increase cognitive load. In contrast, results in the present
paradigm are likely explained by the fact that the task required compar-
ing two simultaneous streams of data (a speaker’s and a listener’s) from a
third-person perspective. In such a situation, simultaneous video modal-
ities (AV-V, VV) require spatially dividing one’s attention among the two
ongoing streams (looking left, looking right), leading to difficulties pro-
cessing cues of asynchrony between the two. On the other hand, the A-V
modality requires processing the alignment of sound with a single video
stream, which is comparable to judging multimodal signals from a sin-
gle talking head and may therefore lead to better performance (and no
advantage upon further adding the speaker’s video information). It is
interesting to ponder whether such cognitive limitations in judging the
contingency between two concurrent visual streams may have led to the
development of abilities that favour the detection of speech-to-face over
face-to-face coordination and whether the preference for one modality or
another depends on the timescale of the coordination: fast (milliseconds)
for facial backchannelling, plausibly slower for other types of joint action
explored in previous dyadic visual tasks (Neri et al., 2006; Moran et al.,
2015).

TRF analysis of the speaker’s speech loudness and the listener’s facial
action units revealed that genuine interactions were characterized by sys-
tematic ‘social transfer functions‘, predominantly at mouth action units
(AUs 12, 25, 26 and 28) and head nods. TRFs peaked between 1.5-2s
for the majority of mouth AUs, and at ∼2.5s for head nods (Figure 1-D),
which suggests slower dynamics for the latter. This pattern of results is
consistent with previous descriptions of the dynamics of backchanneling
in the non-verbal behaviour literature (Hömke et al., 2018; Boudin et al.,
2024). Moreover, the dynamics of the AUs important for perceiving con-
tingency (AU25 and AU43) reveal the inhibitory behaviour of blinks until
the offset of AU25. It is possible that blinks that would normally have oc-
curred are suppressed, which would be compatible with the idea that
blinks may function as an index of the end of an expression.

The fact that genuine and fake trials differ in how well they match the
TRF fits for these AUs does not imply, of course, that observers actually
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use that information to do the task. Here, we have presented two sepa-
rate streams of evidence that speak to this question. First, we used a ma-
chine classifier to show that TRF fit provides sufficiently discriminating
information to reach similar levels of performance as human observers.
While such machine arguments do not conclusively indicate that ob-
servers use the same cues, they provide an important proof-of-possibility
that these cues would support such an inference if they did (for similar
arguments, see e.g. Goupil and Aucouturier, 2021; Piazza et al., 2017;
De Boer and Kuhl, 2003). Second, we found that observer judgements
of genuineness, regardless of correctness, correlated with TRF fit, over
and beyond static quantities of motion at AUs 25 and 43. While such
correlations suggest that trials that match dynamic predictions of facial
consequences are the same trials that observers also judge more likely to
be genuine, they remain descriptive and do not provide a formal test of
causality (Casadevall and Fang, 2008). For instance, it could be that while
genuine trials indeed contain TRF-predictable eye or mouth backchan-
neling, they also provide other cues either at locations (e.g. pupil size -
Hess and Petrovich, 2014; Kret, 2018; Goswami et al., 2020) or at dynam-
ical scales that are not captured by AUs and the TRF methodology used
here. Consequently, perhaps it is this latter information that influences
observer ratings. Study 2 below will provide a more causal test of the
influence of the eye or mouth region in the perception of contingency by
using dynamic masks to prevent observers from processing information
in these regions. The experimental paradigm introduced in Chapter 5
will also address the question of causality in more details.

Finally, the current analysis left some ambiguity as to what exact cues
are used by observers in the task. While machine classifiers suggest that
genuine and fake trials did not differ in terms of eye-TRF fit (but only
in terms of mouth predictions), both mouth- and eye-TRF fits correlated
with human observer ratings. Because of the correlational nature of these
results and the low sample size, the relationship between the variables
could indicate a number of different things. For instance, it could indicate
that both face regions are in fact discriminative and utilized, but in a way
that is not captured by our automated AU analysis, or that only mouth
information is useful, but observers are also biased towards using eye
information (even if counterproductively) or that both mouth and eye
predictions are ecologically correlated in the dataset. While all of the
relations can, in principle, be explored by further correlational analysis,
Study 2 below will address the question more conclusively by presenting
stimuli that only contain one or the other type of information to a new,
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larger sample of participants. If eye-TRF fit is not discriminative, then
performance should collapse when presented with eye-only trials.

3.2 Study 2: Eyes vs. Mouth - Is one sufficient for
perceiving contingency?

Study 1 established that observers were able to discriminate between
backchanneling in genuine and fake interactions, and showed that dy-
namic predictions of the facial consequences of speech based on pre-
learned “social transfer functions” (i.e. TRF fit) in the mouth and eye
were consistent with such judgements. It potentially provides a mecha-
nism explaining the detection of social contingency in human observers
(but also leaves ambiguity about whether both mouth and eye informa-
tion is actually utilized and/or useful).

Study 2 aims to replicate these results and provide a more conclusive
causal test of this hypothesis by presenting a new, larger sample of partic-
ipants with stimuli manipulated with dynamical visual masks to present
only eye or mouth-area dynamic information. In addition, Study 2 also
controls the baseline difficulty of the task by selecting equal numbers
of correctly and incorrectly recognized stimuli (based on the ratings of
Study 1 participants).

3.2.1 Materials and Methods

Participants

We recruited N=188 participants through Prolific in a between-subject
design with approximately 65 participants in each condition (Neyes =
61,male = 39,M = 31.53, SD = 9.76;Nmouth = 67,male = 39,M =
31.17, SD = 10.66;Noriginal = 63,male = 36,M = 30.84, SD = 10.77). Par-
ticipants gave their informed consent and were compensated at a stan-
dard rate. An a priori power analysis conducted using G*Power (Faul
et al., 2009) found the minimum sample size required in each group to be
n = 64 to obtain 80% power for detecting a medium effect at α = .05.

Stimulus selection

Stimuli for Study 2 were selected as a subset of stimuli from Study 1, to
control the difficulty of the task more formally. First, because V-V stim-
uli were not recognized accurately in Study 1, and AV-V trials did not
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provide any performance advantage over A-V, Study 2 was restricted to
A-V stimuli. Second, to select the subset, we classified the n=66 A-V tri-
als of Study 1 as hits, misses, correct rejections or false alarms based on
the most frequent decision made by Study 1 participants and selected
n=30 stimuli controlled for difficulty in each of the four signal-detection
categories, resulting in a total of 120 A-V stimuli.

Stimulus manipulation

Trials were further manipulated by creating dynamic visual masks that
isolated specific parts of the face in the listener’s video while hiding ev-
erything else (Figure 3.5). We used the DaVinci Resolve software (Black-
magic Design) to track a manually-specified rectangle centred either on
the eye or mouth region in the video recordings and manipulated the
outside of the rectangle at zero pixel intensity. This yielded 3 differ-
ent versions of each AV-V trial where the speaker’s audio was played
over a video that featured either the complete face area (“original”, same
as Study 1), only the eye region (“eye” condition), or only the mouth
(“mouth” condition).

Procedure

Participants were presented with 40 stimuli in one of the three condi-
tions in a between-subject design (eyes: N=61; mouth: N=67; original:
N=63). In each condition, the task was the same as in Study 1 with
participants watching the videos and rating each interaction as either
genuine or fake (1-interval, 2-alternative forced choice). A previous ver-
sion of this task was piloted with n=20 offline participants and a within-
subjects design as opposed to between-subjects, but was changed due
to the discovery of order effects. The procedure was preregistered at
https://aspredicted.org/fsp7-g7jw.pdf.

3.2.2 Results

Results replicated the results of Study 1, with performance significantly
above chance for the original, full-information videos (d′ = 0.21, t(62) =
3.70, p < .001). Performance was also above chance for the eyes condi-
tion (d′ = 0.24, t(60) = 6.06, p < .001), with no difference from original
videos (t(122.0) = 0.46, p = 0.65), but significantly greater than in the
mouth condition (t(126.0) = 2.57, p < .05). The mouth condition was
not significantly above chance (d′ = 0.09, t(66) = 1.84, p = .07), but it
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wasn’t significantly lower than the original condition either (t(128.0) =
−1.73, p = 0.09).

We further reproduced the TRF analysis of Study 1 in the original con-
dition. We used generalized linear models to test whether participant
responses in the original condition correlated with the TRF fit and aver-
age intensity of AU25 and AU43 (response ∼ AU25fit + AU25intensity +
AU43fit + AU43intensity + (1|participant)) and found only AU25 TRF fit
(β = 1.39, p < .001) and AU43 TRF fit (β = 0.70, p < .001) to be signif-
icant predictors. Because the masking in both manipulated conditions
rendered Py-feat unable to detect faces for subsequent AU analysis, we
were unable to reproduce this analysis in the eye-only and the mouth-
only stimuli.

3.2.3 Discussion

By adopting a design involving causal manipulation where we isolated
either eye or mouth information in a more controlled subset of stimuli
from Study 1, Study 2 provided a strong test of observers’ use of infor-
mation in the eye and mouth regions and provided causal evidence that
participants can use either eye or (to a lesser extent) mouth-region infor-
mation to judge social contingency in conversations.

In addition, we found no statistical evidence in the original condition
to suggest any performance improvement when participants were pre-
sented with complete face information. This not only suggests that no
other facial cues besides the eye and the mouth provide any discriminat-
ing information for contingency in this specific task (replicating the only
2 Bonferroni-corrected AU predictors in Study 1), but also that partici-
pants did not utilize the interaction between the eye and mouth to any
avail. This suggests that dynamic predictions of eye and mouth activ-
ity constitute redundant cues/signals for the aim of detecting social con-
tingency, a property that contrasts with other types of facial inferences,
which typically utilize a dynamic and complementary hierarchy of sig-
nals over time (Jack et al., 2014).

Moreover, Study 2 replicated the results seen in Study 1 (albeit on a
controlled subset of the same stimuli) in that the TRF fit of both AU25
and AU43 correlated with participant ratings in the original condition
while static intensity information did not. Taken together, this pattern of
results strongly suggests that dynamic predictions of facial consequences
in both the eye and mouth regions of listeners constitute a mechanism for
third-party observers judging social contingency.
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Figure 3.5: Study 2. Left: A-V trials from Study 1 were manipulated
by creating dynamic visual masks that isolated specific parts
of the listener’s video while hiding everything else. This
yielded 3 different versions of each trial where the speaker’s
audio was played over a video that featured either the com-
plete face area (‘Original’, bottom), only the eye region (‘Eyes’
condition, top), or only the mouth (‘Mouth’ condition, mid-
dle). Right: Sensitivity (d’) was significantly better for partic-
ipants in the Eyes condition than in the Mouth condition and
viewing the trials in the Original condition, i.e. the full non-
masked videos, conferred no performance advantage over the
conditions with manipulation.
Horizontal bars over the eyes were added in this image to protect the
anonymity of the participants.

59



In particular, Study 1 left some ambiguity about whether dynamic eye
information was used or even useful. Results in Study 2 established that
it was indeed the case and that eye-only performance was significantly
better than looking only at the mouth. This result is therefore consis-
tent with TRF predictions in Study 1 and in the ‘original’ condition of
Study 2, but not with the physical comparisons and machine classifica-
tions of Study 1, which showed that stimuli only differed on mouth-AU
predictions. One reason might be that while there are several AUs related
to the mouth, the eye-related AUs are limited in terms of communica-
tive information conveyed. Subsequently, the model may fail to capture
important information from the eyes (e.g. gaze direction - Conty et al.,
2006; Cañigueral and Hamilton, 2019; Wahn et al., 2022), which human
observers are instead able to exploit.

3.3 General Discussion

While previous research has repeatedly shown that detecting contin-
gency in conversational backchanneling is a robust human ability and
that it is likely an important precursor to developing higher-level social
cognitive skills, very little is known about what specific backchanneling
cues contribute to the detection of social contingency, and how. In this
chapter, we introduced a novel behavioural paradigm in which partici-
pants were asked to identify genuine contingent behaviour in recorded
video interactions. We manipulated both the contingency (genuine or
fake) and the nature of information present in the interactions, either
through different audio-visual modalities (Study 1) or by masking parts
of the listeners’ faces (Study 2). Consistent between the two studies, our
results showed that observers perform above chance when recognizing
genuine social interactions; that, to do so, they causally rely on the link
between the speaker’s speech and the listener’s mouth and eye informa-
tion; and that this inference is driven by time-aligned, dynamic predic-
tions rather than average quantities of movement. In both experiments,
judgements of social contingency are well-predicted by a computational
model that evaluates the agreement of observed data with the output of a
pre-learned “social transfer function” that dynamically predicts the facial
consequences of a given speech signal.

The fact that, across two experiments and two independent samples of
participants (N=18 and N=188), we found replicated evidence that partic-
ipants were above chance at discriminating fake from genuine backchan-
neled interactions, even when severely degraded to contain only part
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of the face, confirms that social contingency detection is a robust social-
cognitive capacity in adult observers - and that our paradigm is a robust
task to study this capacity. In particular, observers were able to do the
task even when the speaker’s face was masked (Study 1, A-V condition)
and showed no drop in performance when the listener’s video only fea-
tured a small rectangle of dynamic information around the eye or the
mouth region (Study 2). This suggests that observers have developed
highly redundant models of contingency that can exploit partial infor-
mation and are therefore adaptive to a variety of interactional circum-
stances. This is at odds with other forms of facial signalling such as the
inference of emotional expressions, which often critically depend on the
availability of one single cue to disambiguate alternative inferences, e.g.
eye information for fear recognition (Adolphs et al., 2005) or mouth/nose
information for disgust (Pavlova et al., 2023), and is consistent with the
idea that social contingency detection may be an early developmental
stepping stone towards such higher-level forms of social inferences.

Both studies found repeated evidence that to detect contingency, ob-
servers relied on dynamic predictions of facial consequences. This was
manifest in 3 types of correlational analyses showing that such predic-
tions discriminated genuine from fake trials; that they provided enough
information for a machine classifier to do the task; and that participant
responses correlated with how well backchanneling signals in the eye
and mouth AUs were predicted dynamically, but not with their average
activity. Study 2 also provided causal manipulations to confirm that in-
formation restricted to these two face regions was sufficient to do the
task (in the case of eyes), and no less accurate than control (in the case
of mouth). Taken together, this pattern of results strongly suggests that
pre-learned models that enable the dynamic prediction of facial conse-
quences in the eye and mouth regions of listeners constitute a mecha-
nism by which third-party observers judge social contingency, which we
propose as ‘social transfer functions’.

In this work, we implemented such social transfer functions using tem-
poral response functions (TRFs). While they make strong modeling as-
sumptions on the system (Chapter 2), TRFs offer a particularly parsi-
monious representation of what a predictive model of backchanneling
could look like: namely, an impulse response to which the speaker’s in-
put speech is convolved to generate the listener’s facial output. Once
trained, social TRFs can be compared, e.g. across action units, or
dyads/individuals. Here, using training data from an ecological dataset
of speed-dating conversations, we were able to derive TRFs for predictive
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action units (AUs) in both the eye and mouth regions, and showed that
they embodied different expected timings for contingent facial responses:
both TRFs contained early negative components around 300ms, suggest-
ing either an expected deactivation of listener responses at the beginning
of an utterance, or a fast positive reaction at the offset of an utterance.
Both AUs also had strong positive peak activation, but at different peak
locations (AU25: early, around 1sec; AU43: late, around 2sec). We also
identified that AU43 activity was inhibited for almost the entire duration
of AU25 activation, confirming the temporal complementarity of these
cues.

Beyond AU25 and AU43, the wider range of TRFs obtained also pro-
vides insight into the temporal dynamics of action units in naturalistic
conversations, regardless of their function for decoding contingency or
other aspects. First, TRFs allow the grouping of expressions or AUs that
have similar contingent dynamics, such as those of AUs 12, 14 and 15
with comparable peak latencies at around 1.8s (Figure 3.6A), as well as
AUs 23 and 24 with both containing multiple peaks at 1 and 2.5s (Figure
3.6B). The remarkably similar temporal structure of some of these AUs
could potentially be difficult to disentangle and confound the outputs
of the increasingly popular automated AU detection models. Second,
TRFs also allow comparisons between the chronometry of AUs that are
thought to be physiologically related - for example, Figure 3.6C reveals
that AU25, AU26 and AU28 are activated sequentially over the course of
1s peaking at 0.9s, 1.4s and 1.7s, respectively. Comparing AUs such as
these with varying temporality can also shine a light on interesting rela-
tionships between them as in the case of AU12 (smile) and AU43 (blink)
(Figure 3.6D) where we see a blink being inhibited prior to the onset of a
smile and ultimately occurring not quite after the smile offset but simul-
taneously with it, an observation in line with the literature on the tempo-
ral coordination of smiles and blinks (Trutoiu et al., 2013; Rupenga and
Vadapalli, 2016). More generally, we show that observing the dynam-
ics of AUs with this methodology can facilitate the discovery of ‘groups’
of seemingly disparate AUs and provide insights into how the complex
choreography of facial expressions composes meaningful social signals.
In conclusion, the concept of a social transfer function, implemented here
with TRFs, provides an operational mechanism for the general ability of
’interpersonal predictive coding’, by which observers use the actions of
one agent to predict both the content and temporality of a second agent’s
actions (Manera et al., 2011).

While the mechanism in this study provides accurate predictions of,
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Figure 3.6: The complex choreography of facial expressions for so-
cial communication. TRFs for each AU projected onto low-
dimensional Euclidean space using multidimensional scal-
ing such that the similarity/distance between each in high-
dimensional input space is maintained. (A and B) highlight
that the dynamics of mouth-related AUs converge to a similar
temporal structure, while (C), on the other hand, reveals the
distinct but sequential nature of the activations of AUs 25, 26
and 28 shining a light on the complex choreography involved
in the composition of facial expressions for social communi-
cation. (D) shows the dynamics of AU12 (smile) and AU43
(blink) with inhibition of blinks prior to a smile, followed by
blink onset simultaneously with smile offset.
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e.g. the extent to which a trial appears genuine, or the parts of a face
used to make such inferences, the results presented in this chapter leave
several important questions unanswered. First, the nature of these re-
sults remains mostly correlational. While we showed that TRF agree-
ment correlated with subjective ratings, it remains entirely possible that
participants use entirely different cognitive representations and proce-
dures to do the task - procedures whose outcomes happen to grossly
correlate with those of our TRF algorithm (i.e. an issue at Marr’s algo-
rithmic level of inquiry; Marr, 2010). Second, our correlational evidence
relied on machine-learning based estimations of AU activity. The black-
box nature of these algorithms raises questions about whether the esti-
mates reflect true activity in the eye or mouth region. For instance, Py-
feat may use information from the mouth to estimate the activity of an
eye-related AU, thus confounding comparisons of TRF predictability of a
specific region over another. Results in this chapter indeed demonstrated
some degree of ambiguity regarding which exact AU was predictive of
contingency, with Study 1 suggesting that information related to con-
tingency was mostly present in the mouth area, while Study 2 showed
that eye-only performance was significantly better than looking only at
the mouth. Thus, to ascertain the facial “modularity” of these results,
one needs a way to probe what exact visual information is used by machine-
learning algorithms such as Py-feat to estimate AU activity.
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Roadmap

In this chapter, we introduce the ‘social transfer function’, an FIR
model based on concepts and techniques discussed in Chapter
2. Using these social transfer functions, we show that observers
detect social contingency by evaluating the alignment between a
speaker’s speech and a listener’s facial responses and in particu-
lar, the dynamics of these responses rather than static movement
quantities.
In the next chapter (Chapter 4), we will address both of these
methodological needs at the same time. First, we use the system-
identification technique of reverse correlation (section 2.3.1) to
probe the facial modularity of Py-feat and critically reflect on some
of the patterns of results presented in this chapter.
Second, the inferred reverse-correlation kernels also give us a way
to parametrically control Py-feat AU activation in videos - a tech-
nique we will then exploit in Chapter 5 to provide a more causal,
hypothesis-driven evidence as to whether observers actually use
internal representations that can be characterized as impulse re-
sponses.
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CHAPTER 4

COMPUTATIONAL INTERLUDE:
EXPLAINING ACTION-UNIT
DETECTION MODELS

In the previous chapter, we presented experimental evidence that ob-
servers’ recognition of genuine social contingency relied on the link be-
tween a speaker’s speech and signals from a listener’s mouth and eye
regions. Moreover, judgements of contingency were well-predicted by
a computational model that characterized the mapping between acous-
tic features and facial signals as “social transfer functions", implemented
here as impulse responses/TRFs.

However, despite consistent evidence across two separate experiments
for the existence of such a link, its nature remained mostly correlational.
To make concrete claims about the obtained model of contingent inter-
actions, one would need a way to experimentally manipulate conversa-
tional dynamics. Such manipulations would allow one to formally test
whether signals matching the predictions of the model produce the de-
sired effect on observers’ perception of contingency as opposed to when
there is a mismatch (a process described as going from “merely descrip-
tive to hypothesis-driven” in Casadevall and Fang, 2008). It is also pos-
sible that Py-feat, the model used to estimate action-unit (AU) activity
in the listener’s face in the previous chapter, estimates the activity of a
mouth-related AU by incorporating, for instance, the activity of the eyes.
This would confound any comparisons between the predictability of one
region of the face over another in response to speech signals. Thus, what
is needed is to ascertain the modularity of estimates of facial activity by
probing what exact visual information is used by machine-learning algo-
rithms such as Py-feat.

In this chapter, we present a “computational interlude” into the do-
main of AI explainability in an attempt to solve both of these method-
ological needs at the same time. First, we use the system-identification
technique of reverse correlation (Section 2.3.1) to probe the modularity of
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two commonly used AU detection models, Py-feat (Cheong et al., 2023)
and Openface (Baltrušaitis et al., 2016), and critically reflect on some
of the patterns of results obtained in Chapter 3. Second, the inferred
reverse-correlation kernels used for explainability also allow for para-
metric control over Py-feat’s AU activation in videos. This will provide
the methodological basis for investigating the causality of TRFs through
reverse-correlation experiments with human participants in Chapter 5.

4.1 Explainable AI

The ’technology enactment theory’ (Fountain, 2004) posits that percep-
tion of technology as being objective reflects only their physical capacity,
i.e. the capabilities of their hardware and software. What is overlooked is
the sociocultural influence of people and institutions on how the technol-
ogy is used. In other words, technology may be objective in isolation, but
its use by human agents inevitably imbues it with subjectivity through
the transfer, deliberate or otherwise, of our preconceptions and biases.
This has been particularly well-documented in research into bias in fa-
cial analysis systems. Studies show large variance in the performance
of gender classification models depending on gender and ethnicity (Buo-
lamwini and Gebru, 2018), bias against under-represented groups in the
data, mainly black and Asian females (Serna et al., 2021), and faster
degradation of precision for black faces compared to white faces in au-
tomatic face recognition (Majumdar et al., 2021). Widely used software
like Google Cloud Vision, Microsoft Azure Computer Vision and Ama-
zon Rekognition have been found to display gender bias in terms of the
kind of images used to represent women and how they are labelled and
categorized, with images of women containing significantly more anno-
tations based on physical appearance than images of men (Schwemmer
et al., 2020). A recent survey paper echoes the theory of enacted technol-
ogy in its description of the various forms of bias in AI models (Mehrabi
et al., 2021). The first, called ‘data to algorithm’ bias, is caused by im-
balanced datasets or skewed representations of certain groups affecting
model training and propagating to its outputs. These biased outputs then
influence user behaviour, leading to ‘algorithm to user’ bias. The user
bias is, in turn, reflected in the data they generate which is fed into AI
models for further training, resulting in ‘user to data’ bias. This vicious
cycle of bias has, in recent years, motivated a rise in mitigation efforts
through more conscientious building of datasets and, especially impor-
tantly, the development of more explainable AI systems.
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Explainability in AI is an attempt to describe AI systems and high-
light any potential biases. Recently, two approaches to explaining the
outputs of AI models have become prominent - sensitivity analysis (Si-
monyan et al., 2013), which quantifies the amount of change in each fea-
ture needed to affect model predictions, and layer-wise relevance prop-
agation (LRP; Bach et al., 2015), which evaluates how much each fea-
ture contributes to the prediction. Explanations generated by these ap-
proaches are usually visualized with saliency maps, which highlight
parts of the input that are discriminative with respect to a given class
and, in so doing, provide a correlational mapping between the input and
the model’s prediction. For instance, LRP has been used to obtain neuro-
physiologically interpretable explanations for the classification of single-
trial EEG by indicating the relevance of each point in high-dimensional
spatio-temporal EEG data (Sturm et al., 2016). While techniques like LRP,
among others like gradients (Simonyan et al., 2013) and excitation back-
prop (Zhang et al., 2018), backpropagate the relevance score of features
through the layers of the neural network from output to input, others
learn the weights of features by perturbing the inputs using, for instance,
occlusion (Zeiler and Fergus, 2014) and observing the corresponding ef-
fect it has on model output. One such algorithm called RISE (Random-
ized Input Sampling for Explanation; Petsiuk et al., 2018) offers a gener-
alizable approach by not requiring access to the model’s internal features
or parameters. Instead, it probes the model by randomly sub-sampling
inputs and recording the resulting model outputs before generating a fi-
nal saliency map, which is a linear combination of the random masks
weighted by the corresponding output probabilities. Utilizing similar
principles involving randomized inputs (but with additive noise instead
of occlusion), reverse correlation was originally developed to probe neu-
rons as black-box systems (see Chapter 2.3.1). However, recent studies
have begun to explore its potential for generating explanations of AI
models. For instance, using a reverse-correlation procedure, random
perturbations of either the texture or shape of faces revealed a strong
bias towards image texture compared to image shape in a CNN trained
for facial recognition (Xu et al., 2018). Similar methodologies have also
been used to demonstrate that a CNN tasked with distinguishing differ-
ent facial identities places greater emphasis on the eyes, eyebrows and
central face region (Tian et al., 2025) and to highlight the discrepancies
between the features used by DNNs and humans to process facial iden-
tities (Daube et al., 2021). In a comprehensive account demonstrating its
versatility (Thoret et al., 2021), reverse correlation is used to extract both
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discriminative and representative features of different kinds of classifiers
across various tasks, namely, the classification of written numbers by a
CNN, distinguishing speech from music with an SVM and classifying
sleep stages from neurophysiological recordings.

4.2 Reverse Correlation with AU Detection
Models

In this chapter, we propose to leverage reverse correlation to explain
machine-learning based AU detection models. As already encountered in
Chapter 3, action units (AUs) are distinct facial expressions characterized
by specific muscle movements which can be combined to describe basic
emotions by virtue of their modularity. By categorizing subtle expres-
sions into distinct action units, a difficult-to-quantify high-dimensional
feature set is transformed into a smaller set of high-level and, presum-
ably, cognitively meaningful features. While the detection of AUs used to
require manual hand-coding by trained FACS (Facial Action Unit Coding
Scheme; Ekman and Friesen, 1978) experts, this obstacle was overcome
by machine-learning-based AU detection models whose ease-of-use and
accessibility allowed widespread application in facial expression recog-
nition (Tian et al., 2001), emotion recognition (Zhi et al., 2021), study-
ing social cognition in humans (Arias-Sarah et al., 2024), non-invasive
pain detection without the need for self-reports (Bouazizi et al., 2025) and
synthesis of facial expressions (Roesch et al., 2011; Fan et al., 2020; Zhao
et al., 2021; Guo et al., 2023). Tasked with learning relevant information
in the input data for maximising classification accuracy, these AU detec-
tion models boast high accuracy. Yet, it is unclear how and why a model
classifies a facial expression in a certain way. Though there have been
studies attempting explainability on emotion recognition in deep learn-
ing models (del Castillo Torres et al., 2022; Weitz et al., 2019), relatively
little work has been conducted to investigate machine-learning models
trained to predict lower-level facial features like AUs.

To address this gap, here we create thousands of random deforma-
tions on faces of different genders and ethnicities, and force AU detection
models to score the deformed images as more or less likely to represent
a given AU. We use psychophysical reverse correlation, a system iden-
tification technique already proposed to be useful for AI explainability
(Thoret et al., 2021), to extract representational features of the model for
each AU, i.e. the template against which the model compares a given
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configuration of facial features and judges it to be a specific AU. The tem-
plates (referred to as kernels in the reverse-correlation literature; Murray,
2011) of the AUs can then be compared to see if they are modular in
image space. Here, we interpret modularity qua Fodor’s ‘modularity of
mind’ (Fodor, 1983) and focus particularly on information encapsulation,
meaning that an AU detection model should not allow inflow of infor-
mation from regions of the face that are not necessary to detect a partic-
ular AU. In other words, we ask: does the model only ‘look at’ the rele-
vant facial features for classification, or does it, for instance, consider fea-
tures around the mouth to classify an eye-related AU? We further explore
this modularity using adversarial examples and compare the templates
across different genders and ethnicities to uncover any bias. Finally, we
use these templates to compute the contributions of individual AUs to
make up basic emotional expressions and compare how these composi-
tions in AU detection models differ from the theoretical composition as
indicated in the FACS. Since models have been shown to display similar
performance despite using largely different features (Arras et al., 2016,
2017; Lapuschkin et al., 2016), we perform reverse correlation with two
commonly used AU detection models - Py-feat and Openface - to inves-
tigate any differences in the behaviour of different models.

4.3 Methods

4.3.1 Datasets

We obtained 128 high-resolution images of faces with neutral expressions
from the Chicago Faces Database (Ma et al., 2015) and the London Set
from the Face Research Lab (DeBruine and Jones, 2017). Images were
selected such that they were balanced across genders (male, female; 2 x
64) and the four ethnic groups defined for this study (White, Black, West
Asian, East Asian; 4 x 32) (Fig. 4.1).

4.3.2 Reverse-correlation stimuli

We used the FaceWarp module in CLEESE (Burred et al., 2019) to create
2000 randomly deformed images for each image in our dataset. Using
a single photograph of one actor’s resting face, we first used the video
tracking software Mediapipe (Lugaresi et al., 2019) to extract the 2D coor-
dinates of 468 facial landmarks on the actor’s eyes, forehead, nose, mouth
and chin; we then generated new random positions for the landmarks by
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Figure 4.1: Examples of facial identities from the 4 different ethnici-
ties. 128 such images were collected from the Chicago Faces
Database (Ma et al., 2015) and the London Set from the Face
Research Lab (DeBruine and Jones, 2017).

adding Gaussian noise to each of the (x,y) coordinates: Xd
i = Xi+Ni(0, σ)

where Xi = (xi, yi) are the original coordinates of the ith landmark, Xd
i

their newly-obtained deformed coordinates and Ni is a random sample
from a truncated Gaussian distribution of mean µ = 0, standard devia-
tion σ, truncated at ±2σ. In order to obtain realistic deformations, we set
σ empirically to be equal to 1/20th of the pixel distance between the eyes
of the original photograph (Fig. 4.2B). We then deformed the original
photograph to match the position of the new landmarks, using a pixel
mapping technique called rigid Moving Least Squares or MLS (Schaefer
et al., 2006). MLS produces a function f that maps pixels in the non-
deformed image to the deformed image, in a manner which transforms
landmarks Xi to Xd

i , and smoothly interpolates all pixels in between (Fig.
4.2C). We then fill the resulting triangles using affine warping (Fig. 4.2D).
Figure 4.2E illustrates some possible outputs of the procedure. The pro-
cedure was adapted from previous work by Arias et al. (2018) and Zaied
et al. (2023). Using this procedure, a total of 265,000 images (128 facial
identities x 2000 randomly deformed variants) were generated and used
as stimuli for reverse correlation.
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Figure 4.2: Illustration of stimulus generation for AU explainability.
We generated facial reverse-correlation stimuli using a face
deformation technique able to apply random perturbations of
facial expressions in arbitrary face photographs. (A) We first
use video tracking software to extract the 2D coordinates of fa-
cial landmarks on the actor’s eyes, forehead, nose and mouth.
The figure, adapted from Zaied et al. (2023), illustrates the
procedure with 23 landmarks from the OpenFace video track-
ing software; the technique used in this thesis instead uses
468 landmarks from the MediaPipe software (B) We then gen-
erate new random positions (red) for each of the landmarks
by adding gaussian noise to the (x,y) coordinates of original
landmarks (black). (C) We then deform the original photo-
graph in the neighborhood of each landmark, using a pixel
mapping technique called rigid Moving Least Squares (MLS).
(D) The resulting image is a smooth interpolation of pixels in
between landmarks, mimicking a random facial expression.
(E) Illustration of random manipulations obtained with this
procedure. In the present work, we use these photographs as
stimuli in two reverse-correlation experiments. Figure and pro-
cedure adapted from Zaied et al. (2023).
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4.3.3 Procedure

Reverse correlation was then performed with two commonly used AU
detection models, Py-feat (Cheong et al., 2023) and Openface (Baltrušaitis
et al., 2016), for each facial identity separately. 2000 randomly deformed
images of a facial identity were obtained from CLEESE and grouped into
random pairs to get a total of 1000 trials. They were then fed into the AU
detection models. The models assigned ‘scores’ to all AUs in both images
in a trial and the image with a higher score for an AU was considered to
be its choice or response. Reverse correlating the models’ responses over
all trials, we extracted a kernel for each AU of each facial identity using
the classification-image technique (Murray, 2011). Specifically, for each
AU, we computed the average random (x,y) displacement for each of the
468 landmarks in the 1000 images recognized as more representative of
the AU, and subtracted the average random displacement of the images
recognized as less representative. Kernels were then normalized by di-
viding them by the absolute sum of their values. For each facial identity,
this procedure resulted in a 2×468 vector of (x,y) coordinates, represent-
ing the displacement to be applied to a given image in order to increase
the probability of the resulting face being selected as more representative
of a given AU (Fig. 4.3).

4.4 Results

4.4.1 AU detection models are not always modular

The normalized kernels of all 128 facial identities were averaged to obtain
a single kernel for each AU. For each landmark in a kernel, we conducted
one-sample t-tests against 0 (Bonferroni corrected across landmarks) on
the deformation values along the x- and y-axis, such that only landmarks
showing statistically significant deformations along either the x- or y-axis
(or both) were retained. This resulted in a kernel containing the land-
marks and the values by which to deform them in order for the model
to detect the AU represented by the kernel in a face. The obtained ker-
nels were then applied to images of the associated facial identities and
fed into the model to obtain its scores for all AUs, in a process hence-
forth referred to as decoding. For each AU, we decoded the kernel (K+)
and its opposite (K−), i.e. containing the same deformation values as
in K+ but multiplied by -1. Then, t-tests were conducted between the
post-decoding AU scores of K+ and K− (over all facial identities), with
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Figure 4.3: The reverse correlation procedure for explaining AU detec-
tion models. (A) Using the procedure described in Section
4.3.2, we create 2000 randomly deformed images for each of
the 128 facial identities. (B) The reverse correlation proce-
dure consists of assembling the randomly deformed stimuli
into pairs and feeding them into the AU detection model to
obtain its ratings of AUs. To obtain a binary ‘response’ as in
typical reverse correlation experiments, we assign a value of 0
or 1 to a stimulus in the pair depending on which has a higher
AU rating. (C) For each facial identity, and for each AU, we
subtract the stimuli with positive responses (1) by the stimuli
with negative responses (0) to obtain the kernel of that partic-
ular AU and facial identity.
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Figure 4.4: Reverse correlation kernels show lack of modularity in AU
detection. (A) The AU12 (smile) reverse correlation kernels of
Py-feat and Openface, visualized by applying them on a face,
provide qualitative evidence for the convergence of kernels
towards meaningful internal representations of the black-box
models. (B) For most AUs, there are significant differences be-
tween model ratings of that AU when the kernel of that AU
is applied as compared to when its opposite (or K−) is ap-
plied. This suggests that the reverse correlation kernels can
capture discriminative information about AUs, i.e. which spe-
cific facial features need to change and how for an expression
to be classified as a particular AU. However, Py-feat’s ratings
of AU06 and AU12 appear to be correlated with each other,
meaning that applying AU06 on a face changes Py-feat’s rat-
ing of AU12 and vice versa. (C) This lack of modularity is
confirmed by showing that Py-feat uses virtually the same
landmarks to detect both AU06 and AU12 despite represent-
ing movements in different face regions (eyes and mouth, re-
spectively). While Openface shows the expected pattern of re-
sults for AU06 by using mostly eye-related landmarks, it too
appears to take advantage of eye-related landmarks to detect
AU12.
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the idea being that if the kernel did capture discriminative information
about an AU, the difference between K+ and K− decoding scores would
be large and consequently yield a higher T statistic.

We first visualized the AU12 (smile) kernels of both Py-feat and Open-
face (Fig. 4.4A) to obtain a qualitative picture of whether the reverse-
correlation procedure was able to converge towards meaningful kernels.
Quantitatively, we found that the reverse-correlation kernels of both Py-
feat and Openface captured discriminative information about most AUs,
as evident in the relatively large values of the T-statistic (dark green cells)
along the diagonals of both heatmaps in Figure 4.4B. Essentially, this pat-
tern implied that when the K+ and K− of a specific AU were decoded,
only the ratings of that particular AU changed significantly while the oth-
ers remained relatively constant. Interestingly, we observed a violation
of this pattern in Py-feat, especially with AU06 (cheek raiser), AU12 (lip
corner puller) and AU14 (dimpler), suggesting that a change in the inten-
sity of AU06, for instance, induced a significant change in Py-feat’s score
of AU12. Concentrating on the two most non-modular AUs, we investi-
gated which landmarks were significantly important for detecting AU06
(squinting of the eyes) and AU12 (smile) in Py-feat and Openface (Fig.
4.4C). In the case of AU06, we found that Py-feat, in addition to expected
landmarks in the eye-region of the face, unexpectedly used a large num-
ber of landmarks around the mouth, while Openface mostly only used
landmarks around the eyes. Remarkably, the landmarks used by Py-
feat to detect AU06 were almost identical to those used to detect AU12.
Contrary to expectations, both Py-feat and Openface demonstrated sig-
nificant involvement of landmarks in the eye-region in addition to the
mouth-region for the detection of AU12.

4.4.2 Kernels can be used to generate adversarial examples

To further investigate the influence of ‘task-irrelevant’ landmarks on AU
ratings, we subjected the AU detection models to adversarial examples.
From Py-feat’s AU12 kernel, we isolated 3 landmarks: 280 (cheek), 285
(inner eyebrow) and 373 (lower left eye). These landmarks were cho-
sen because they were found to significantly influence AU12 ratings in
both Py-feat and Openface and, by virtue of being eye-related landmarks,
were deemed less relevant for detecting the mouth-related AU12. Thus,
we created 3 kernels containing a single landmark and the corresponding
deformations along the x- and y-axis as specified by the AU12 kernel.

First, we separately applied each of the 3 single-landmark kernels
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Figure 4.5: Adversarial examples on Py-feat. We isolated 3 landmarks in
Py-feat’s AU12 kernel found to have a significant impact on
AU12 ratings despite not being in the mouth region - namely,
280 (left cheek, green), 285 (left inner eyebrow, orange) and
373 (lower left eye, blue). (A) On a neutral face, individual
landmarks are deformed by varying magnitudes (i.e. by a
scaling factor s, where s ∈ [−100,−90, ..., 90, 100] with neg-
ative values representing deformation in the opposite direc-
tion). Deforming the landmarks by large positive values in-
creases Py-feat’s ratings of AU12 (a, b, c), but the same is not
observed for negative values of s. (B) A similar procedure
is conducted on a face upon which the average AU12 ker-
nel has been applied (i.e. a face already containing AU12).
Large deformations by negative values of s dramatically de-
crease Py-feat’s ratings of AU12 (a, b, c) despite changes oc-
curring largely in the general shape of the head while leaving
the smiles intact. Deforming landmarks by increasingly large
positive values of s demonstrates significant variability in Py-
feat’s AU12 ratings with relatively small positive values pro-
ducing large changes in AU12 ratings (d, e, f) despite, in most
cases, very little discernible effects on the face.
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to a neutral face for different values of the scaling factor s (s ∈
[−100,−90, ..., 90, 100]), i.e. the value by which to multiply the deforma-
tion values. None of the 3 landmarks affected AU12 ratings when their
deformation values were scaled by negative values of s. However, with
s = 100, Py-feat’s AU12 ratings increased from 0.06 for the original neu-
tral face to 0.2, 0.5 and 0.37 for landmarks 280, 285 and 373, respectively
(Fig. 4.5A). The same procedure was repeated with the base figure con-
taining a decoded AU12 kernel (i.e. already containing a smile). Large
negative values of s dramatically decreased Py-feat’s AU12 ratings of the
faces from 0.62 to 0.01 for landmarks 280 and 373, and to 0.15 for land-
mark 285 (Fig. 4.5Ba, b and c). On the other hand, positive values of s
resulted in a more volatile trend without any consistent increase or de-
crease in AU12 ratings. Even relatively small positive values of s that did
not produce any discernible changes to the face resulted in a sharp de-
crease in AU12 rating from 0.62 to 0.17 for landmark 280 (s = 25) and an
increase to 0.83 for landmark 373 (s = 30), while the more visible defor-
mation of landmark 285 (s = 45) caused the AU12 rating to fall by half
(Fig. 4.5Bd, e and f).

4.4.3 AU detection models do not show systematic gender
or ethnicity bias

To investigate whether a model’s internal representations of AUs vary
with gender and/or ethnicity, we compared the kernels of the two groups
of interest (e.g. male vs. female). We conducted t-tests between the defor-
mation values of each of the 468 landmarks (Bonferroni corrected) over
all faces in the two groups. This was done for every available AU in the
model and visualized in the form of a heatmap showing, for each AU,
whether there was at least one landmark with deformation values that
were significantly different between the two groups being compared.

T-tests between the deformation values of landmarks as specified in
the kernels of different genders and ethnicities revealed almost twice as
many AUs with at least one significantly different landmark in Openface
as compared to Py-feat. Compared to eye-related AUs, there are also al-
most twice as many mouth-related AUs with at least one significantly
different landmark. Globally, the sparsity of the distribution of signifi-
cant AUs and the lack of consistency across group comparisons in terms
of which AUs were found to be significant did not indicate the presence
of any systematic bias against a particular gender or ethnicity. Despite the
total number of AUs/emotions with differences between groups, closer
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Figure 4.6: Lack of systematic gender and ethnicity bias in Py-feat and
Openface. Conducting t-tests between deformation values
of the kernels between groups reveals that no specific group
comparison consistently yields a greater number of signifi-
cantly different AUs (as seen in the sparse and inconsistent
distribution of red cells in the heatmap). Examining signifi-
cant AUs more closely shows that the significant differences
are driven only by a few landmarks (2 on average and a max-
imum of 4 in one comparison for one AU). This is highlighted
by visualizing the AU15 (top left) and disgust (top right) ker-
nels of male and female faces and showing that there are only
2 significantly different landmarks in both. On the whole, the
relatively similar spatial distribution of landmarks used by
the models for different groups suggests that these models do
not show systematic bias against any specific gender or eth-
nicity.
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inspection revealed that most of these comparisons contained only one
or two significantly different landmarks (with only a single comparison
between West Asian and Black identities on AU45 showing a maximum
of 4) (Fig. 4.6).

4.4.4 Kernels can quantify the composition of emotions in
terms of AUs

Finally, we took the decoding scores of Py-feat’s emotion kernels for all
facial identities and used them to model the composition of basic emo-
tions (happiness, sadness, surprise, fear, anger and disgust; Ekman and
Friesen, 1971) in terms of AUs. We used ridge regression with 5-fold
cross-validation to model the relationship between standardized decod-
ing scores of AUs and the decoding score of the corresponding emotional
expressions. Regularization parameters were optimized across a grid
from 10−3 to 103, and coefficients were extracted to quantify each AU’s
contribution to emotion prediction while controlling for multicollinear-
ity among AUs. The coefficients of the independent variables were taken
to represent the extent of their contributions to the detection of the emo-
tion specified as the dependent variable and visualized using radar plots.
These plots were then compared qualitatively with the theoretical com-
position of emotions, i.e. the AUs whose combination is supposed to give
rise to a given emotion as per the FACS.

Results showed that while the relationship between AUs and most of
the emotions were relatively well-matched with theoretical expectations,
there were a few discrepancies. While the composition of happiness
showed the expected contributions of AU06 and AU12, it also showed a
large contribution from AU02 (outer brow raiser). Similarly, both sadness
and surprise demonstrated largely the same patterns as their theoretical
compositions, but with the incongruous addition of AU25 (lips part). The
composition of fear displayed lower contribution from AU04 (brow low-
erer) and greater contribution from AU26 (jaw drop) than expected. On
the other hand, the composition of anger and disgust deviated signifi-
cantly from expectations, with anger showing contributions from a wide
range of other AUs while disgust showed the greatest contribution from
AU06, AU09 (nose wrinkler) and AU12 rather than the expected combi-
nation of AU09 and AU15 (lip corner depressor) (Fig. 4.7).
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Figure 4.7: Composition of emotions in terms of AUs. Applying Py-
feat’s emotion kernels on the 128 facial identities, we model
their emotion ratings with the corresponding ratings of all
other AUs as predictors. Taking the regression coefficients
(green) as the extent of contribution to the classification of a
face as an emotion, they are compared against the theoreti-
cal composition of emotions (black) suggested by the FACS.
Results reveal several discrepancies, like the involvement of
AU01 and AU02 in happiness, AU25 in sadness and surprise
and AU26 in fear. The compositions of anger and disgust,
in particular, display significant deviance from the theoreti-
cal composition, with many different AUs involved in anger
and AU06 and AU12 appearing to be the largest contributors
to disgust.
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4.5 Discussion

In this chapter, we leverage techniques from psychophysics, namely re-
verse correlation, to explain machine-learning action-unit detection mod-
els. We show that reverse-correlation kernels capture discriminative in-
formation about the features utilized by Py-feat and Openface to make
judgements about the presence of AUs. Taking advantage of the discrim-
inative information, we first highlight the lack of modularity in these
models by showing that ratings of, e.g. AU12, are influenced by fea-
tures in the eye-region in both models. Second, we use information from
AU12 kernels to isolate some landmarks that ideally should not impact
a model’s ratings and show that the models can be sensitive to small
changes that are seemingly imperceptible to humans. Furthermore, we
demonstrate the method’s potential to uncover gender or ethnicity dif-
ferences in how the models internally represent facial expressions. While
these differences exist, they are sparsely distributed across AUs and
participant categories, and we did not find any systematic bias against
one specific gender or ethnicity. Finally, we demonstrate that reverse-
correlation kernels can be used to decompose high-level emotional fa-
cial expressions into their component AUs, with potential for achieving
more fine-grained control over complex facial expressions and thus pro-
vide useful insight into how models internally represent these emotions
in comparison to what can be expected theoretically.

The fact that kernels capture discriminative information about the AU
detection models shows the viability of reverse correlation as a technique
to explain machine-learning based models, a point also made by Thoret
et al., 2021. Unlike some other algorithms for explainability, kernels com-
puted from the reverse correlation procedure not only reveal which parts
of the image affect model decisions but also how those parts need to be
manipulated to induce that effect. Access to this information expands
the utility of these kernels by allowing us to apply them to the original
stimuli and probe the model again, in a process referred to in this study
as decoding. Decoding the kernels thus provides a mechanism for quan-
tifying how much of the information contained within them is actually
discriminative or influential in driving the model’s decisions. In further
work, one could also potentially present the model’s kernels as image
stimuli to human participants, as well as participants’ kernels as stimuli
to the machine-learning models, and examine the differences between
the features used by machines and humans.

The finding that Py-feat’s AU06 kernel focuses heavily on landmarks
around the mouth instead of the eyes and that the AU12 kernel focuses
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on the eyes in addition to the mouth shows that AU detection models do
not always ensure modularity. This is significant because the FACS aims
to break down complex social signals into combinations of independent,
smaller units. If these smaller units are conflated with each other by AU
detection models or are not treated modularly, AU activity inferred by
machine-learning models is potentially confounded. For instance, using
Py-feat to detect ‘genuine’ or Duchenne smiles, which are supposed to be
a combination of AU06 and AU12, will likely produce incorrect results
given the positive dependence of the two AUs in Py-feat and its use of
virtually the same landmarks to detect both (Fig. 4.4C). The similar find-
ing that both Py-feat and Openface detect AU12 using landmarks around
the eyes in addition to those around the mouth poses similar problems.
In the context of this thesis, these results provide a sobering look at the in-
terpretations of Chapter 3, which showed some ambiguity as to whether
participants used eye or mouth regions to process cues of social contin-
gency. Because these were based on correlations with TRF-predictions
of AU activity estimated by Py-feat, if AU activity is incorrectly quan-
tified using similar facial landmarks, it could be that activity that was
correlated for one AU is also correlated for other, unrelated AUs. Simi-
lar correlational confounds may plague a number of findings relying on
machine-learning analysis of AUs in datasets, and highlight the need for
experimental paradigms that provide stricter causal control on physical
cues - something we address in Chapter 5. One possible cause for the
lack of modularity could be the fact that they were trained on datasets
containing naturalistic expressions. If the expressions were annotated for
each AU independently and the distribution of the AUs is not indepen-
dent, then the activity of one AU could be used as a shortcut to clas-
sify the other (Geirhos et al., 2020). Consequently, a model trained on a
dataset featuring faces that only display parametric activation of a sin-
gle AU, or with a random i.i.d. (independent and identically distributed)
combination of AUs, might display more modularity.

In this chapter, the issue of modularity is further highlighted by evi-
dence showing that AU detection models are sensitive to ‘adversarial ex-
amples’ featuring changes in ostensibly irrelevant regions of a face. We
show that manipulating individual landmarks on the cheek, inner eye-
brow, and lower left eye of a neutral face induces a large increase in Py-
feat’s rating of AU12 despite the lip corners actually moving downwards
in some cases. Similarly, we find that manipulating these landmarks on
an already smiling face also dramatically reduces or increases AU12 rat-
ings depending on the direction of the manipulation. A few of these ma-
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nipulations produced barely perceptible differences in the face, and yet
yielded a significant change (decrease for the landmark on the cheek and
increase for the landmark on the lower left eye) in the model’s AU12
rating. Sensitivity to these seemingly "task-irrelevant" landmarks could
reveal analytical strategies taken by the models to quantify task-relevant
features. For instance, it is possible that faced with the task to learn a lin-
ear combination of landmark positions that correlates with AU12, models
converge on estimating the distance between the lip corner and, e.g. the
ipsilateral upper eyelid. Deformation of the eyelid could then lead the
model to wrongly attribute it to a smiling expression. However, given
that large deformations tend to create unnatural modifications to facial
morphology, it might be anticipated that Py-feat, having been trained on
naturalistic facial expressions, would fail to detect AU12 in images featur-
ing unnatural face shapes. Although this could account for the reduced
AU12 ratings observed when such deformations are applied to smiling
faces, the persistence of elevated AU12 ratings when large deformations
are applied to neutral faces remains noteworthy. This pattern suggests
that, beyond global changes in face morphology, Py-feat also shows sen-
sitivity to specific features being manipulated.

While there were examples of differences in AU detection across par-
ticipant groups, we could not draw any conclusions about the pres-
ence of bias against a particular gender or ethnicity. For instance, while
Openface displayed relatively consistent differences for AU15, AU17 and
AU25 across group comparisons, closer examination revealed that only
2-3 landmarks actually differed in terms of how they needed to be de-
formed. The lack of large-scale differences in facial features suggests
that the machine-learning models tested here do not exhibit the kind of
social-cognitive stereotypes usually encountered in human participants
(e.g. systematically associating one ethnicity with one personality trait
Gingras et al., 2023). However, the presence of small-scale differences in
a handful of landmarks might instead suggest a more granular algorith-
mic bias. This is borne out by the adversarial examples showing large
changes in Py-feat’s AU12 ratings as a result of deforming individual
landmarks. This could potentially be investigated by comparing the ef-
fects of the same adversarial examples on different genders and ethnici-
ties. It is also possible that the differences are the result of morphological
differences in faces, depending on the gender or ethnicity. Differences in
face morphology driving differential ratings of AUs and emotions raise
the question of what constitutes bias. Is a model biased if its outputs are
different for different groups? Or is it biased if it disregards differences
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and generates the same outputs for different groups (incidentally, cor-
responding to how the statistical term of bias is understood)? A recent
study found that their seemingly effective algorithm to mitigate biased
outputs in LLMs failed when the LLM was deployed in a different con-
text (Ma et al., 2025). This context-dependence highlights the need for a
more dynamic understanding of bias instead of ascribing it statically.

Discrepancies in the composition of emotions (in terms of AUs) in
this study and the theoretical composition described by the FACS and
the classical affective-science literature, if taken at face value, suggest is-
sues in Py-feat’s representations of the emotions, particularly for anger
and disgust. However, studies have shown that while machine-learning
models show high accuracies for classifying emotions in standardized
datasets containing trained actors displaying prototypical posed emo-
tions, their performance is more variable for emotional displays of non-
standardized spontaneous emotional expressions (Dupré et al., 2020;
Küntzler et al., 2021). Since Py-feat’s models for emotion detection were
trained on both posed and naturalistically elicited emotional expressions
(Cheong et al., 2023), it is thus possible that Py-feat captures the true
composition or at least a greater amount of the variability of emotional
expressions (Jack et al., 2012). Indeed, several studies show that theoret-
ically proposed AU patterns in emotional expressions are not backed up
by empirical findings (Sato et al., 2019), with actors often either not dis-
playing all the prototypical AUs or displaying AUs other than those pre-
dicted (Gosselin et al., 1995). Moreover, previous work also suggests that
machine-learning classification of non-standardized portrayals of emo-
tional expressions is often worse for negative emotions like anger and
disgust than for happiness (Stöckli et al., 2018). This could be a potential
explanation for the greater discrepancies between empirical and theoret-
ical compositions of anger and disgust that we observe here.

Taken together, our results highlight the need for careful evaluation of
the outputs of such black-box models. Indeed, the authors of the Py-feat
toolbox acknowledge that the datasets on which their models are trained
may be unbalanced and advise users to verify the outputs. However, the
accessibility and ease-of-use of these tools, combined with the difficulty
of manually verifying their outputs, often means that they are taken at
face value. The tendency to highlight model performance on benchmark-
ing datasets further adds to the issue by focusing on task performance
statistics instead of providing more qualitative explanations of how such
performance is achieved (Firestone, 2020). Moreover, while action units
are a convenient decomposition of more complex facial expressions, their
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characterization as (still relatively high-level or rather, not sufficiently
low-level) muscle movements can pose a problem, especially in experi-
mental settings, where creating highly controlled stimuli is much sought
after. Given that the FACS does not specify exactly how muscles need
to be configured to ‘make’ a specific AU, it becomes difficult to use them
as a basis for creating precise stimuli according to precise specifications.
It is here that the kernels obtained from reverse correlation can come in
and bridge the gap between low-level landmarks and high-level action
units by mapping emotional expressions and AUs to their correspond-
ing landmarks. As shown here with the decoding paradigm, kernels ob-
tained from performing reverse correlation on machine-learning models
can also function as filters for generative models. The ability to visual-
ize these kernels on images allows them to be used as bases for creating
images or videos of persons displaying a particular AU or emotional ex-
pression. This is particularly useful for generating synthetic media (for
animators, for instance) as well as creating experimental stimuli contain-
ing fine-grained manipulations, something we now turn to in the next
chapter.

Roadmap

In this chapter, we probed two commonly used black-box models
for action-unit detection using the system-identification technique
of reverse correlation. We highlight the need for more careful use
and inspection of the outputs of these models, particularly in exper-
imental settings, due to their lack of modularity and sensitivity to
small, ostensibly irrelevant features and present a few examples of
the different uses of reverse-correlation kernels as generative mod-
els.
In the next and final empirical chapter of this thesis (Chapter 5), we
use the AU12 kernels of Py-feat and Openface to obtain a kernel
containing only the landmarks important for both models in addi-
tion to excluding landmarks outside the mouth region. We then use
the filtered kernel to generate smiles in videos such that the ampli-
tude of smiling activity is scaled in accordance with the dynamics
of random impulse responses. We then use these video stimuli to
extract classification images of the impulse responses possessed by
third-party observers to process social contingency. In doing so, we
attempt to provide a more causal test of the hypothesis put forth in
Chapter 3.
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CHAPTER 5

OBSERVER PERCEPTION OF SOCIAL
CONTINGENCY (REDUX): A
REVERSE-CORRELATION EXPERIMENT

In the work described in Chapter 3, we extracted a ‘social transfer func-
tion’ capturing the relationship between the speakers’ speech and listen-
ers’ facial action units and showed that the extent to which it fit actual
behaviour was associated with subjective ratings of contingency. How-
ever, these preliminary results had several limitations. First, the mod-
elled interactions were embedded in a very specific ‘speed dating’ con-
text that could potentially have altered the organization and timing of
conversational phenomena like backchannels. Perhaps more fundamen-
tally, while we argued that convolution with impulse responses was a
parsimonious way of representing input-output mappings, the experi-
mental evidence in Chapter 3 was largely correlational. Thus, whether
observers encode and decode contingency in social interactions in this
manner remains an open question.

In this chapter, we construct a novel experimental paradigm which
aims to directly probe third-party observers’ internal representations of
social contingency (instead of inferring them from correlations between
observers’ judgements of contingency and predictions of transfer func-
tions). Using reverse correlation, a psychophysics technique based on
system-identification principles (see 2.3.1 and Chapter 4), we attempt to
construct transfer functions of socially contingent smiles in response to
speech in a data-driven manner. To do this, we use a modified version
of the AU12 reverse-correlation kernels obtained from Py-feat and Open-
face in Chapter 4 to synthesize videos containing artificial smiling be-
haviour. We convolved different naturalistic speech extracts with (func-
tionally) many random transfer functions. To avoid the constraints im-
posed by built-in assumptions inherent to a corpus study, we forced in-
dividuals to choose between two randomly varying temporal structures
of smiles over a number of trials. In doing so, we are able to probe their
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perceptual mechanisms more directly and uncover how they internally
represent the dynamics of socially contingent smiles.

Conceptualizing social transfer functions or impulse responses as cog-
nitive mechanisms underlying social perception raises the question of
abstraction or flexibility. Essentially, do social transfer functions encode
abstract rules that can be applied flexibly to disparate speech inputs or
do they encode input-specific rules resulting in different social transfer
functions for different speech inputs? To investigate this, we first de-
rive reverse-correlation kernels for 2 different input sentences and test
for statistically-significant differences between them (Section 5.1); then,
in a second validation study (Section 5.2), we test whether the kernels
generalize to a larger number of possible sentences.

5.1 Study 1: Extracting observers’ internal
representations of contingent smiles

5.1.1 Methods

TRFWarp

To create stimuli for this study, we extended the functionality of CLEESE
(Burred et al., 2019), an open-source Python toolbox that generates stim-
uli for reverse correlation experiments (and was also used in Chapter 4).
The current version of CLEESE consists of two transformation “engines”:
PhaseVocoder, which creates random fluctuations around the acoustic fea-
ture contour of a given audio and FaceWarp, which creates random de-
formations of facial expressions in images. To create the random video
stimuli required for this study, we utilized certain functionality of both
and unified them within a new engine called TRFWarp.

First, we reused the logics of PhaseVocoder’s stimulus design to gen-
erate a set of random breakpoint functions (BPFs) at specific time steps
that define how the desired parameter varies over time. The parame-
ter to transform may be constructed by linear interpolation between the
breakpoints (ramp) or by having square signals with sloped transitions
(square). The breakpoints are sampled from a Gaussian distribution, and
the amplitude or intensity of the desired transformation is controlled by
a standard-deviation parameter (with the ability to avoid extreme values
by truncating the distribution by multiples of the standard deviation; see
Burred et al. 2019 for details). While PhaseVocoder was originally intended
for random transformation of pitch contours (i.e. randomizing stimuli
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directly in stimulus space), here we propose to use the random BPFs as
random impulse responses and convolve them with an input signal to
generate the stimuli.

Second, we reused functionality from CLEESE’s FaceWarp engine to
synthesize smiles in videos of faces. The AU12 (or smile) kernel obtained
from reverse correlating AU detection models in Chapter 4 was provided
as the deformation file containing a list of facial landmarks and their cor-
responding deformation vectors, i.e. vectors representing the magnitude
and direction of shift of each landmark. To apply the deformations on any
given image, CLEESE’s FaceWarp engine uses tools like Mediapipe (Lu-
garesi et al., 2019) and dlib (King, 2009) to extract the coordinates of the
landmarks specified by the deformation file. Provided with a set of Carte-
sian coordinates representing the locations of specific facial landmarks in
the image, FaceWarp then performs linear warping of those locations as
specified by the deformation vectors through rigid transformations using
Moving Least Squares (Schaefer et al., 2006) - see Section 4.3.2 for details.
This smile transformation is applied to videos by simply repeating the
process for each frame in the provided video.

The TRFWarp engine integrates the above processes to generate video
stimuli containing synthesized smiling activity in response to some
speech, and whose dynamics are governed by a random impulse re-
sponse (Fig. 5.1). From a software-engineering perspective, the main
function in the engine takes an audio file and a configuration file as ar-
guments. Users primarily interact with a configuration file where they
can modify the parameters to generate the desired stimuli. Some key
variables defined in the configuration file are:

• mediaFile: the path to the base video to be deformed

• kernelFile: the path to the deformation file to use to deform the
video

• trfDuration: the duration of the randomly generated transfer
function (in seconds)

• window.len: the window size to determine the spacing between
successive breakpoints (in seconds)

• std: the standard deviation for defining the limits of the amplitude
or intensity of the transfer functions

Provided with the requisite parameters, TRFWarp first extracts the
RMS (intensity) of the audio and the individual frames of the video spec-
ified in mediaFile. It then proceeds to use the PhaseVocoder engine to
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Figure 5.1: The TRFWarp procedure. The engine extracts the RMS inten-
sity from the provided audio file, generates a random impulse
response whose points are sampled from a Gaussian distribu-
tion, and computes the convolution between the two to get an
output time-series, which is interpreted as the gain of a trans-
formation applied to the listener’s face. Each time point in
the gain is multiplied by a provided deformation vector. If
the deformation vector defines a smile transformation, then
multiplying it by gain values essentially means scaling the in-
tensity of the smile. The scaled deformation vector is then
applied to individual frames of a provided video file, which
are then combined to give a video containing dynamic synthe-
sized smiles driven by a linear combination of an audio input
and a random transfer function.

90



generate a random transfer function of trfDuration seconds with ran-
dom breakpoints at equally spaced intervals defined by window.len,
and computes its convolution with the audio RMS to give the corre-
sponding gain time series. Each value in gain is the factor (positive or
negative) by which to scale smile intensity at that time instance by mul-
tiplying it with the set of deformation vectors stored in kernelFile.
This scaled set of deformation vectors is then applied to the mediaFile
frame at the corresponding time instance. Iterating over all gain values
and applying the scaled deformation to the corresponding mediaFile
frame, we combine the deformed frames into a video to obtain the de-
sired stimulus (Fig. 5.1).

Stimuli

For this study, we selected two naturalistic speech extracts (S04 and S52)
lasting 10 seconds from the Speed Dating corpus used in Chapter 3. Both
speech extracts featured different male voices originally addressing a fe-
male listener, and were chosen on the basis of their neutral semantic con-
tent and differences in terms of the number and timing of pauses within
the speech (Fig. 5.4A). Stimulus S04 was transcribed as “euh moi j’aime
beaucoup... j’aime beaucoup lire, apprendre des choses euh, j’aime beaucoup le
cinéma... ouais j’aime beaucoup le cinéma... quoi d’autre. (English: “Umm, I
really like... I really like reading, learning new things umm I really like movies...
yeah, I really like movies... what else."). Stimulus S52 was transcribed as “j’ai
fait plusieurs euh... plusieurs sports différents... euh et non, non actuellement
je, je fais un peu de tout" (English: “I’ve done several umm... several different
sports... umm and no, no, currently I do a bit of everything.")

The base video to be deformed, obtained with permission from a
study by ?, involved a female individual in ‘resting state’, i.e. main-
taining a neutral expression while looking directly into the camera. To
avoid any confounding effect of eye blinks on the perception of con-
tingency while also preserving the subtle but important natural bio-
logical head motion (?), we extracted an approximately 3-second seg-
ment of the original video that did not contain blinks and extended
it to match the length of the speech extract by reflecting the frames
(f1, f2...fn|fn, ...f2, f1|f1, f2...fn). Additionally, the RMS of the speech ex-
tracts were z-scored before convolution with random transfer functions
to induce greater variance in the resulting gain, and re-scaled to be
non-negative (g̃ = g − min (g)) following evidence from a pilot study
showing significant bias against ‘negative smiles’. Finally, the gains
were smoothed using locally-weighted scatterplot smoothing (LOWESS;
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Cleveland, 1979) to avoid rapid fluctuations in smiles, and truncated at a
hand-picked value above which unnatural distortions begin to appear in
the image. Since the duration of each trial was significantly longer than
in typical reverse correlation experiments, we opted for a conservative
experiment duration of 30 minutes, which reduced the likelihood of par-
ticipant fatigue but also limited the number of trials we could present.
Thus, we generated 240 video stimuli, which were assembled into ran-
dom pairs to obtain a total of 120 trials. Whether a given number of
trials is sufficient for a particular reverse correlation task is an empirical
question and depends partly on difficult to anticipate cognitive aspects
(such as the existence of a single unimodal sensory representation) or
participant characteristics like consistency in decision-making (see e.g.
Adl Zarrabi et al., 2024; Burred et al., 2019 for further discussions). We
assess the suitability of the number of trials presented in this study for
the given task in Section 5.1.2 below.

Participants

N = 27 (male: 19; M=35.2) native French speakers were recruited online
on Prolific. Participants gave their informed consent and were compen-
sated at a standard rate.

Procedure

The experiment was conducted using JONES, an online platform for re-
verse correlation experiments. Participants were presented with 120 tri-
als in a 2AFC design, lasting approximately 30 minutes in total. There
were an equal number of trials for the two speech extracts, i.e. 60 tri-
als per speech extract. Each trial required participants to simultaneously
watch a pair of videos of the same person with different smiling be-
haviour driven by random transfer functions while listening to the same
speech extract. At the end of the trial (which could only be played once),
participants were asked which of the two videos contained smiling be-
haviour that was most appropriate in response to the speech.

Statistical analysis

Using the classification image technique (Murray, 2011), we computed
each participant’s internal representation of the ideal contingent smile in
response to each of the two speech extracts. Specifically, we subtracted
the average gain of the stimuli that were not chosen from the average
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Figure 5.2: Example of an experimental trial. Stimuli containing smil-
ing behaviour driven by random transfer functions were as-
sembled side-by-side into random pairs. In each trial, partici-
pants watched the two videos simultaneously while listening
to some speech. At the end of the trial, they were asked which
of the two videos contained smiling behaviour that was most
appropriate for the given audio.

gain of the chosen stimuli. The resulting gain kernel KGain (i.e. the ker-
nel in stimulus space) was then normalized by dividing it by its root
mean square. Similarly, by subtracting the average random transfer func-
tions used to generate the gains of the non-chosen stimuli from the aver-
age transfer functions used to generate the gains of the chosen stimuli,
we computed the transfer-function kernel (KTRF ), i.e. the kernel in TRF
space - the rationale being that the participant’s transfer-function kernel
encodes the dynamics of contingent smiles and is responsible for gener-
ating gain predictions that are matched with the actual observed gain to
determine contingency.

Given that the number of trials in this experiment was lower than
in typical reverse correlation experiments, we performed some addi-
tional processing. First, we smoothed the KTRF of each participant using
LOWESS smoothing. Second, we computed participants’ “internal noise"
(Neri, 2010) or their level of consistency in applying an internal represen-
tation to repeated stimuli. As implemented in the open-source Python
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toolbox PALIN, this involves adding Gaussian noise (internal noise) to
the responses of an idealized participant model, estimating the probabil-
ity of its response bias for different standard deviations (between 0 and
± 5) of the additive noise and then finding the value of internal noise
that minimizes the error between observed and predicted values for each
participant’s response bias. Because this experiment did not involve re-
peated (double-pass) trials, we used a noise-estimation method called
‘Intercept’ that was recently introduced by a colleague (ZARRABI, 2025).
Five participants with internal noise greater than 2.5 standard deviations
of the stimulus noise were excluded from part of the analysis, leaving 22
participants. While internal noise helped estimate consistency within in-
dividuals for a given speech extract, we further examined consistency be-
tween the two speech extracts based on the mean value of each sentence’s
KTRF . As reported below (Fig. 5.5, we found evidence for bimodality
in response strategies across participants. The dominant strategy with
negative-valued KTRF involved N=13 participants, and the alternative
strategy with positive-valued KTRF involved N=9 participants. Result
subsections below indicate which of these groups of participants were
analysed in each instance.

Finally, when testing for statistical significance of the kernels, the S04
and S52 KTRF of participants were averaged and tested for significance
at every time point with one-sample t-tests against 0. To test whether the
KTRF of the two speech extracts were statistically similar, we conducted
paired t-tests between their values at every time point.

5.1.2 Results

Convergence of Kernels (N=27)

Correlating the final KTRF and KGain of participants with their kernels
after each trial enabled us to analyze whether the number of trials was
sufficient for participants to converge to a final kernel. The results indi-
cated, per expectations, that 120 trials were sub-optimal for convergence,
particularly in the case of the KTRF (Fig. 5.3), with no visible flattening
or plateauing of the curves, suggesting the need for a greater number of
trials for a clearer picture of observers’ internal representations. This dis-
crepancy between the rate of convergence between the KTRF and KGain

could reflect a relatively rapid agreement about the general occurrence
of smiles during specific parts of the speech, while the precise onset and
offset latencies of smiles require a greater number of trials. While future
work should examine the impact of a larger number of trials, that impact
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Figure 5.3: Convergence of TRF and Gain kernels. Each participant’s fi-
nal KTRF and KGain is correlated with their kernel after each
trial to see whether observers can converge to similar repre-
sentations within the given number of trials. Despite the sub-
optimality of the number of trials, particularly in the case of
KTRF , the number of trials was not increased to maintain a
reasonable experimental duration.

should also be weighted against the experiment duration, kept here at a
reasonable 30 minutes.

The Dominant Strategy (N=13)

Analyzing the KGain of participants, we found that they were strikingly
well-adapted to the distinct speech extracts. Both gain kernels showed
participant preference for contingent smiles occurring during pauses in
the speaker’s speech, peaking around 1s (M=1.09, SD=0.4) after the pause
onset, and returning to baseline upon the resumption of speech (Fig.
5.4B). Remarkably, even though the gain kernels of the two speech ex-
tracts were closely aligned with the distinctive characteristics of each and
thus widely different from each other, their KTRF s were relatively simi-
lar (Fig. 5.4C). Indeed, we found no statistically significant differences be-
tween the two, except at a solitary time point t = 1 (t(12)=-5.5, p=.01) (Fig.
5.4D), suggesting that the dynamics of contingent smiling behaviour, de-
spite disparate inputs, might be encoded by sentence-independent repre-
sentations. Taking advantage of the lack of difference between the KTRF

of the two sentences, we proceeded to focus on the combined kernel (Fig.
5.4E) for further analysis. The global negativity of the combined ker-
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Figure 5.4: Gain and TRF kernels obtained from the reverse correlation
task in Study 1. (A) Speech extracts were chosen based on
differences in the timing of pauses on relatively neutral se-
mantic content in both, with the speaker in S04 (left). (B)
The gain kernels highlight participants’ preference for contin-
gent smiles occurring during pauses in the speaker’s speech
and peaking, on average, 1s after pause onset. (C) Transfer
function kernels show statistically similar dynamics for dif-
ferent speech extracts (except at a solitary time point t = 1,
t(12)=-5.5, p=.01, (D)). This similarity, together with distinct
gain kernels, suggests efficient encoding of the temporal land-
scape of contingent smiles through parsimonious internal rep-
resentations, characterized here as transfer functions. (E) Due
to the lack of statistical differences between the transfer func-
tion kernels of the two sentences, a combined kernel was com-
puted and utilized for further analysis.
Gray horizontal bars represent time points significantly different from 0.
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nel suggests that when RMS is negative (as a result of the z-scoring),
the corresponding smiles are positive. In other words, a KTRF assigns
low weights to high speech intensity and consequently, a smile occurring
during speech is perceived as being less contingent than one occurring
during a pause or a period of low speech intensity. Beyond its global
negativity, the specific shape of the kernel points towards the onset of
smiles occurring approximately 0.5s after the beginning of a pause, with
the gradual return to 0 after approximately 2s (M=1.945, SD=0.66) sug-
gesting a finite temporal window beyond which speech features cease to
be relevant.

Bimodal strategy for contingency detection (N=27)

While the dominant strategy involved a negative kernel suggesting smil-
ing behaviour during pauses, 4 of the 27 participants (33%) possessed
KTRF with the opposite positive pattern, i.e. smiling during speech and
‘unsmiling’ during pauses (Fig. 5.5A). Interestingly, we found that 9 par-
ticipants alternated between a positive and a negative KTRF depending
on the speech extract. This suggested both between and within indi-
vidual variability, taking the form of a bimodal strategy for perceiving
contingency of listener smiles. Comparing the KGain and KTRF of par-
ticipants with opposed strategies, we found that this bimodality was re-
flected remarkably well in the kernels showing differences only in terms
of their direction or polarity while leaving the temporal structure (i.e.
latencies) largely intact (Fig. 5.5B and C). Moreover, we observed that
almost all participants possessing large internal noise (>2.5) also had a
tendency towards bimodal strategies, perhaps indicating a detrimental
impact of switching strategies on decision stability during the task (es-
pecially since S04 and S52 trials were presented in random order rather
than in separate blocks).

5.1.3 Corpus TRF vs. Reverse Correlation Kernel

We computed a smile TRF from genuine interactions in the Speed Dating
corpus from Chapter 3, with RMS intensity of speakers’ speech as input
and the listeners’ AU12 responses as output. This TRF, representing the
production dynamics of contingent smiles found in naturalistic interac-
tions, was then compared against the combined kernel of S04 and S52
representing the observer’s internal representation/expectation of what
these dynamics should be. Contrary to expectations, the Speed Dating
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Figure 5.5: Bimodality in participant strategies for social contingency
perception. (A) The distribution of the average values of ob-
servers’ KTRF reveals the existence of a ‘dominant strategy’
(lower left quadrant) consisting of a negative-value KTRF for
both speech extracts, suggesting a preference towards smiling
during pauses. However, some observers also employ alter-
native strategies resulting in positive KTRF for both speech ex-
tracts (upper right quadrant) or a combination of positive and
negative KTRF (upper left and lower right quadrants). A ma-
jority of the observers with such alternative strategies also dis-
play high levels (>2.5) of internal noise (red dots). (B) and (C)
The S04 (green) and S52 (red) kernels of observers with posi-
tive KTRF (solid lines) and those with negative KTRF (dashed
lines) highlight the bimodal nature of the observers’ internal
representations with similar dynamics that are opposed only
in terms of their sign or direction.
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TRF displayed an opposite pattern to that of the reverse correlation ker-
nel (Fig. 5.6). These opposing polarities suggest that while observers
in this study expect contingent smiles to occur during pauses in speech,
actual listeners in the Speed Dating corpus tend to smile during speech.
On the other hand, the onset and offset latencies of both were remarkably
similar. This pattern of results was reminiscent of the roughly 1/3 of par-
ticipants who had positive reverse-correlation kernels, and could suggest
that these participants in fact used perceptual heuristics that more closely
match production dynamics than the majority of observers.

We then examined whether the (majority, negative-valued) reverse-
correlation kernel was better at predicting the subjective ratings of con-
tingency collected in Chapter 3 than the AU12 production TRF (which
was not found to be a significant predictor in Chapter 3, see Section ??).
To do so, we used the majority kernel (N=13) of S04 and S52 combined to
predict listeners’ AU12 responses to the RMS intensity of speech extracts
in the Speed Dating corpus and calculated the correlation between the ac-
tual and predicted AU12 responses. The same process was repeated for
the AU12 TRF computed from genuine interactions in the Speed Dating
corpus. Using the two correlations as independent variables, we fitted
a generalized linear mixed model (GLMM) with observer judgements of
whether an interaction contained genuine or fake contingency in Chapter
3 as the binary dependent variable: Response ∼ TRF Correlation
+ Combined Kernel Correlation + (1|Subject). The results
confirmed that the AU12 production kernel was not a significant pre-
dictor of observer judgements of contingency (speed-dating TRF: β =
0.18, p = .66), but neither was the reverse-correlation kernel (β = 0.25, p =
.57).

While these results appear to indicate that the reverse-correlation ker-
nels extracted here do not have ecological consequences when judging
the contingency of interaction, attempting to validate the kernels ob-
tained in this study against the AU12 TRF obtained in Chapter 3 presents
two problems. First, the speed-dating TRF was learnt from genuine in-
teractions, i.e. real-time first-person responses to changes in speech in-
tensity, as opposed to the KTRF evaluated from third-party observers’
perception of contingency. Past literature has argued that social observa-
tion and social participation do not necessarily involve the same cogni-
tive processes (Wilms et al., 2010; Tylén et al., 2012). Indeed, comparisons
have shown fewer actual backchannels by participants in an interaction
than expected by third-party observers (Heldner et al., 2013). Second, in
Chapter 3, observers were presented with naturalistic interactions con-
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Figure 5.6: Comparison of the combined kernel with the AU12 (smile)
TRF obtained in Chapter 3. In Chapter 3, we learned a TRF
for the mapping between RMS and AU12 (smile) in genuine
interactions. Comparing this TRF with the combined kernel
of S04 and S52 showed similar onset and offset latencies in
both. However, the polarity of the two representations were
the opposite (with statistically significant differences between
the two concentrated at the peaks as represented by the hor-
izontal grey bars), meaning the smile TRF learned from the
corpus encodes smiling behaviour during speech and ‘un-
smiling’ during pauses while observers in the reverse corre-
lation task converged on a representation encoding the oppo-
site, i.e. not smiling during ongoing speech and smiling dur-
ing pauses.
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taining a wide variety of facial signals, including head nods, blinks and
eye gaze, in addition to smiles, which were the only signals present in
the stimuli in this study. Since the perception of contingency is modu-
lated by a diverse range of signals and the interactions between them, it
stands to reason that observers’ expectations of the dynamics of contin-
gent signals are likely to be affected when faced with unusually minimal
interactions. Finally, one of the features of such contingent signals is that
they are often replaceable, meaning that a head nod can be employed in
place of a smile and vice versa (Ward and Tsukahara, 2000). Therefore, in
impoverished ‘interactions’ like those in this study, the one solitary avail-
able signal might be co-opted to represent general contingent behaviour,
something that may not be the case in more complex interactions.

5.2 Study 2: So, do observers prefer contingent
smiles that match their internal
representations?

In Study 1, we extracted reverse correlation kernels which were consid-
ered to be observers’ internal representations of contingent smiles in re-
sponse to speech. However, the relationship between a speaker’s speech
and a listener’s smiles learned from naturalistic interactions in the Speed
Dating corpus did not match the reverse correlation kernels and, in fact,
demonstrated essentially the opposite pattern. Moreover, predictions of
smiling behaviour generated by the reverse correlation kernels also did
not show any significant correlation with observers’ judgements of con-
tingency in Chapter 3. To examine whether reverse-correlation kernels
had any impact on perceived contingency in a more controlled task, we
collected data from a new set of participants and tested the generaliz-
ability of the kernel on speech extracts that were not used in Study 1.
To do so, we took the combined KTRF of S04 and S52, created several
variants with different dynamic characteristics, and applied them to four
additional speech extracts from the same dataset.

5.2.1 Methods

Stimuli

The combined kernel from Study 1 was thresholded on the basis of
statistically-significant deviation from 0 at each time point using one-
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sample t-tests corrected for multiple comparisons, i.e. kernel values
at time points where the t-statistic was below αcorrected were changed
to 0. This kernel (K) was then used as the base kernel for creating 4
other variants - its opposite pattern Kinverse, a version time-shifted by
1 second KtimeShift, as well as 2 constant-valued kernels Kconstant and
KconstantInverse whose values were the mean values of K and Kinverse re-
spectively (Fig. 5.7A).

All 5 kernels were applied to 4 new speech extracts in addition to the 2
used in Study 1, for a total of 6, all lasting approximately 10 seconds and
consisting of male speakers talking about different neutral topics (Fig.
5.7B). Videos were generated using the same deformation file as in Study
1 and combined into the following pairs: (K,Kinverse), (K,KtimeShift),
(K,Kconstant), (Kconstant, KconstantInverse) and (Kconstant, KtimeShift) to ob-
tain 30 stimuli (5 kernels × 6 input sentences).

In light of the bimodal strategy employed by participants in Study 1,
we investigated whether there was in fact a ‘dominant strategy’ by com-
paring K against Kinverse. To test whether the dynamics of K were mean-
ingful, we compared it against the static kernel Kconstant, which also al-
lowed us to confirm the size of the temporal integration window sug-
gested by K. The comparison of K with KtimeShift was conducted in or-
der to reveal whether observers were sensitive to changes in onset and
peak latencies, and thereby validate the specificity of the dynamics de-
scribed by the original kernel. We compared Kconstant and KconstantInverse

to investigate if observer preference or bimodality was affected by the
absence of the specific dynamics of K, thus lending further support for
it being meaningful. Finally, by comparing Kconstant with KtimeShift we
hoped to uncover whether changing the onset and offset latencies had a
greater negative impact on observer perception of contingency than sim-
ply shifting the ‘appropriate’ dynamics in time.

Participants

N = 21 (male: 13; M=33.6) native French speakers were recruited online
on Prolific. Participants gave their informed consent and were compen-
sated at a standard rate. 3 participants were excluded from the analysis
due to them taking approximately 60 minutes to complete the experi-
ment, as opposed to the average of 31 minutes. Thus, a total of 18 partic-
ipants remained for further analysis.
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Figure 5.7: Speech extracts and kernels used in the validation study. (A)
From the kernel obtained in Study 1, 5 variants were created,
consisting of 3 dynamic kernels, K, Kinverse, KtimeShift and 2
static kernels, Kconstant, KconstantInverse. (B) A total of 6 different
speech extracts were used for this study, all of them lasting
∼10s and consisting of a male speaker talking about a neutral
topic.
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Procedure

Participants were presented with a total of 60 trials (30 unique trials re-
peated with the positions of the videos reversed, i.e. left or right) in an
experiment lasting approximately 30 minutes. In a procedure similar to
that in Study 1, each trial required participants to watch a pair of videos
of the same person with different smiling behaviour driven by differ-
ent KTRF variants while simultaneously listening to a speech extract last-
ing approximately 10 seconds. They were asked to choose which of the
two videos contained smiling behaviour that was most appropriate in re-
sponse to the speech extract they heard. The pairs of kernels compared
in the experiments were: K vs Kinverse, K vs KtimeShift, K vs Kconstant,
Kconstant vs KconstantInverse and Kconstant vs KtimeShift; each with 6 sentences
times 2 repeats resulting in 12 trials per comparison.

5.2.2 Results

We conducted binomial tests to evaluate participant preference for one
kernel over another over all trials for each pair of kernel variants. Consis-
tent with the evidence of bimodality in Study 1, we found that 17% of the
participants preferred Kinverse and KconstantInverse over K and Kconstant, re-
spectively. Despite this, the overall trend showed a strong preference for
K over its opposite patten Kinverse (p=.000) with K being chosen 63% of
the time (Fig. 5.8A) and for K over KtimeShift (p=.048), which consisted of
the same pattern shifted forwards in time by 1s, with participants choos-
ing K 56% of the time (Fig. 5.8B). Difference in preference between K and
its static variant Kconstant, albeit in the expected direction, was not statis-
tically significant (p=.263) (Fig. 5.8C). Preference for Kconstant was only
marginally greater (p=.088) than that for KconstantInverse, i.e. the static
variant of Kinverse with Kconstant chosen 56% of the time (Fig. 5.8D). Fi-
nally, no statistically significant difference in preference was found be-
tween Kconstant and KtimeShift (p=.541).

Excluding the 3 participants that showed consistent preference for the
opposite patterns of both K and Kinverse, the strength of evidence for par-
ticipant preference for K over Kinverse and KtimeShift increased with K
now being chosen 70% (p=.000) and 60% (p=.014) of the time respectively.
Preference for Kconstant over KconstantInverse was also significant for this
group, with Kconstant being chosen 60% of the time (p=.000). The exclu-
sion of these participants had negligible impact on participant preference
in the comparisons between K and Kconstant and Kconstant and KtimeShift.
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Figure 5.8: Validation of combined KTRF from Study 1. (A) Partici-
pants showed significantly greater preference for smiles gen-
erated by the original kernel from Study 1 (K) compared to
those generated by its opposite pattern (Kinverse). (B) Like-
wise, there was significant preference for K over its time-
shifted version KtimeShift, albeit to a lesser extent. (C) How-
ever, when asked to choose between K and its static version
Kconstant, participants did not display any strong preference
for one over the other. (D) While there was preference for
Kconstant over KconstantInverse (the static version of Kinverse), it
was only marginally significant (p=.08). (E) Finally, no signifi-
cant difference in preference was found between Kconstant and
KtimeShift.
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5.3 Discussion

While previous research has highlighted the role of smiles as backchan-
neling cues in conversation, it has, for the most part, relied on post-hoc
analysis due to the difficulty of applying causal manipulations to social
interactions. Consequently, the scope of any found evidence for the func-
tion and timing of such cues can often be limited by the inability to mech-
anistically test them. In Chapter 3, we attempted to remedy this using
the system identification concepts of impulse responses/TRFs to opera-
tionalize a possible mechanism of social contingency perception in terms
of the dynamics of backchannels. While they allowed testing quantitative
predictions, and indeed, were found to partly correlate with observers’
ratings of social contingency, their generalizability remained plagued
with the same correlational limitations as in previous work. Moreover,
in Chapter 4, we showed that estimates of AU activation by black-box
models like Py-feat and Openface lack the desired modularity, suggest-
ing that TRFs of some specific AU estimated with such data may well
represent the tangled dynamics of several different AUs.

In the work described in this chapter, we developed a novel data-
driven experimental paradigm to uncover the dynamics underlying the
perception of social contingency. This paradigm allowed direct prob-
ing of perceptual mechanisms while carrying fewer assumptions than a
corpus study. Combining system-identification concepts of linear time-
invariant systems and transfer functions, we synthesized realistic smiles
in videos in response to speech by generating random impulse responses
and computing the time-course of those smiles as if they were governed
by the convolution of the speech with the impulse response. Using re-
verse correlation, we then derived participants’ internal representations
of socially-contingent smiles in the form of impulse responses encoding
the dynamics of listeners’ smiles (Study 1). The generalizability of the ob-
tained transfer function was then evaluated by creating variants on top of
it, applying them to different speech, and testing them against each other
(Study 2). Our results showed that while observers’ internal representa-
tions of smile time series (i.e. gain kernels) were tailored to each distinct
speech extract, the underlying transfer functions were reasonably simi-
lar. Furthermore, validation of the transfer function demonstrated that
observers were quite sensitive to the dynamics, as evidenced by their
preference for it over its opposite and time-shifted variants.

The fact that we did not find statistically significant differences be-
tween the impulse response kernels of the two speech extracts suggests
that observers possess internal representations of the dynamics of con-
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tingent smiles (and potentially contingent signals in general) that are
at least partially sentence-independent. This is supported by the find-
ing that despite similar transfer function kernels, the kernels of actual
smiling responses were well-adapted to the distinct speech extracts. For
instance, differences in the timings and durations of pauses within the
two speech extracts were captured quite accurately by predictions gen-
erated by the homogenous dynamics of the transfer functions. Since the
variability and noise involved in everyday social interactions require a
great degree of flexibility, it is perhaps unsurprising that representations
of communicative behaviour in the brain reflect general, parsimonious
patterns of abstract relations. The additional imperative to process such
behaviour rapidly in conjunction with a multitude of other cognitive pro-
cesses means that the organization of these abstract relations also needs
to be computationally efficient. Organizing internal representations as
transfer functions, possibly even something as simple as an impulse re-
sponse, would in theory be coherent with those goals by condensing the
relationship between, in this case, acoustic features of speech and corre-
sponding smiling behaviour, into a more minimal structure. This parsi-
mony allows efficient updating of representations in case of a mismatch
between observed and predicted data, and importantly, reduces the cost
of storing and maintaining many different variants of a representation
where each one is specialized for a different context.

The shape of the combined transfer function of both speech extracts in
Study 1 provides interesting insights into observers’ preferred dynamics
of contingent smiles in response to speech intensity. The negative trajec-
tory of the kernel suggests that observers expect smiles to occur during
pauses or periods of relative silence, with the specific dynamics implying
a gradual increase in smile intensity until it peaks at around 1s after the
onset of a pause, followed by a short period of relative stability lasting ap-
proximately another 1s before a gradual decrease coinciding with the on-
set of speech at the end of the pause. In essence, the transfer function ker-
nel assigns negative weights to high speech intensity, thereby reducing
observers’ perception of smiles occurring during speech as being contin-
gent and increasing it when smiles are aligned with periods of low speech
intensity. Contrary to our expectations, the combined transfer function of
both speech extracts did not match the AU12 (smile) TRF learnt from gen-
uine interactions in the Speed Dating corpus, instead exhibiting the op-
posite pattern (smiles during speech instead of during pauses in speech),
albeit with similar onset and offset latencies. One possible explanation
for this could be the difference between social interaction and social ob-
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servation, meaning that expectations of the timing of contingent smiles
might differ for a listener engaged in an interaction as opposed to an
observer of an interaction (Tylén et al., 2012). Another explanation con-
cerns the relative paucity of signals in this study’s stimuli compared to
everyday social interactions, resulting in observers modifying their in-
ternal representations of the dynamics of contingent smiles. It is possible
that the stimuli in Chapter 3’s Study 1 also contained backchannels dur-
ing pauses, but because they were ecological interactions, signals other
than smiles could step in and fulfil the role of providing feedback during
pauses. This is supported by recent accounts of facial expressions like the
behavioural ecology view of social displays (BECV) which argues that facial
expressions are tools used in social interactions to "signal our contingent
next move to alter yours", i.e. as signals of contingent action as opposed
to being behavioural representations of internal states (?). In this view, in-
dividual facial signals possess some degree of functional flexibility such
that they can adopt different communicative roles in an interaction de-
pending on the context or the task at hand. Thus, smiles in the Speed Dat-
ing corpus could have played a different role and consequently have had
different dynamics, while in this study, the absence of any other signals
meant that observers were forced to use smiles to infer contingency. This
may also explain the bimodality of observers, with some of them perhaps
not adapting their internal representations for the task at hand (involving
severely degraded versions of everyday interactions), which in turn man-
ifested in terms of high internal noise. Interestingly, past research in this
area has shown that backchannel cues tend to occur mostly during short
pauses lasting less than 1s rather than overlapping with speech (White,
1997), have higher frequency within pauses in speech (Truong et al., 2011)
and occur after low pitch regions in the speaker’s speech lasting at least
150ms (Ward and Tsukahara, 2000). The fact that these findings corre-
spond to the transfer function kernel obtained in this study suggests that
it represents the dynamics of backchannels in general rather than the dy-
namics of contingent smiles specifically. Here, we show that in addition
to clustering around prosodic peaks (i.e. simple temporal coincidence)
listener backchannels also incorporate temporal integration of preceding
context.

In Study 2, comparisons between kernel variants with different dy-
namics and over additional speech extracts confirmed that smiling dur-
ing speech negatively influences observers’ perception of contingency of
the smile. Moreover, observer preference for the base kernel over a vari-
ant that was shifted forward in time by 1s indicates that observers are
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quite sensitive to the temporal alignment of smiles with speech inten-
sity and that any disruption to this alignment (namely, slowing down the
facial reaction) decreases the likelihood of the smile being perceived as
contingent. It should be noted that we only validated the kernel against a
single time-shifted variant in the interest of maintaining a shorter experi-
ment, but it could be extended to many different values of time-shift for a
more robust estimate of the latencies involved in contingency perception.
Interestingly, observers did not show a statistical preference for the base
kernel over the static variant consisting of a constant value throughout
the entire duration of the kernel. This suggests that while smiles that oc-
cur too late/slowly are judged as less contingent, early smiles that peak
rapidly do not significantly affect perception of contingency as long as
the causal temporal structure of ∆RMS → ∆Smile remains intact. More
importantly, it implies that the bandwidth, representing the time lag at
which speech intensity ceases to be of relevance, might not have a strong
influence on judgements of contingency of smiles. Practically, the dif-
ference between the two kernels amounts to longer temporal integration
for the constant variant such that the intensity of the smile might de-
crease with ongoing speech but not drop to 0, as would happen in the
case of the base kernel. One possible explanation for the lack of differ-
ence between them could be that the bandwidth of 2s observed in the
base kernel is driven by the lack of variance in pause duration in the
two speech extracts and could have been different if observers were ex-
posed to stimuli with longer pauses. It could, however, also be a way
to account for short interruptions in pauses, i.e. if the speaker interrupts
a pause very briefly, following which the pause resumes, smiles exactly
matching this rapid onset-offset of intensity would presumably appear
rather unnatural. Having a larger bandwidth or a longer temporal inte-
gration window might help counter this. A recent study investigating the
effect of time delays on the appropriateness of backchannels showed that
acceptability of backchannels decreased significantly for time delays be-
yond 1s (Boudin et al., 2024), corresponding neatly with our results show-
ing observer preference for the base kernel as opposed to its time-shifted
variant, as well as the dynamics of the base kernel showing decreasing
relevance of input features approximately between 1.5-2s.

Taken together, these results provide evidence for the ability to charac-
terize internal representations of contingency perception as ‘social trans-
fer functions’ which, if cognitively represented in this manner, would be
extremely economical in terms of computational efficiency and the cog-
nitive cost of storage and maintenance. While we do not claim that con-
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tingency is necessarily represented in the brain as transfer functions or
generate predictions through convolution with input signals, our results
do suggest, qua Popper’s falsifiability (Popper, 2005), that it is not an in-
valid assumption and can be used to draw valuable inferences. We show
that by encoding the abstract rules governing the dynamics of contin-
gent interactions, these social transfer functions, even when simplified
to impulse responses, are able to generate appropriate predictions for
disparate speech inputs. Moreover, the social transfer functions were
obtained using purely data-driven methods. Investigating the multi-
modal dynamics of social interactions using reverse correlation allowed
the exploration, and thus elimination, of a much larger subspace of pos-
sible transfer functions or internal representations than could have been
achieved using traditional experimental paradigms.
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CHAPTER 6

DISCUSSION

6.1 Summary

Over the course of the experimental work presented in this thesis, we at-
tempted to build up a coherent characterization of a social transfer func-
tion. The desire or need for such a characterization arose from a lack
of clarity about the dynamics of social signals despite possessing signifi-
cant insight into their timing and function. Here, we tackled the case of
observer perception of social contingency or the ability to recognize the
actions of one agent as responses to the actions of another, an ability that
is thought to scaffold high-level social processes such as turn-taking and
theory of mind. We cast interacting agents as coupled dynamical sys-
tems and used the system-identification concepts of impulse responses
and transfer functions to model social contingency in terms of the rela-
tionship between a speaker’s speech and a listener’s facial signals.

In Chapter 3, we used a corpus of naturalistic interactions to demon-
strate that third-party observers’ ability to recognize contingency re-
mained robust even when observers could only see either the eyes or the
mouth of listeners. To supplement the behavioural results, we modeled
separate social transfer functions, each describing the relationship be-
tween a given speech and a different facial signal from listeners. Compar-
ing predictions of social transfer functions with observer judgements of
contingency revealed that the latter were globally compatible with their
being based on the dynamics (rather than average activity) of signals in
the mouth-region over the eye-region.

In Chapter 4, representing a brief interlude in the exploration of so-
cial contingency, we used the system-identification technique of reverse
correlation to probe machine-learning based action-unit detection mod-
els and explain their outputs in terms of the features used. Our results
showed that such models do not always ensure modularity, i.e. they
might use information from the mouth to judge activity around the eyes,
and can be sensitive to small, barely perceptible changes in an image
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caused by shifting a single facial landmark. While no systematic bias
was found against any gender or ethnicity, decomposition of basic emo-
tional expressions into component action units also did not correspond
exactly to expectations based on the literature.

In the final experimental chapter (Chapter 5), we combined method-
ological and theoretical insights from the previous chapters by synthe-
sizing smiles in videos using the AU12 (smile) reverse correlation kernel
from Chapter 4 such that their dynamics were governed by the convo-
lution of speech intensity with random impulses. Combined with the
Chapter 3 finding that observers could reliably recognize contingency
even in the absence of a speaker’s face, we created a reverse-correlation
experiment to extract observers’ social transfer functions of contingent
smiles in response to speech intensity in a data-driven manner. We
showed that these social transfer functions were reasonably speech-
independent but nonetheless able to generate predictions of smiles that
were well-aligned with the specific timing of speech and pauses in the
two sentences we tested. Finally, the obtained social transfer function
was validated in a follow-up study in which observers showed a clear
preference for it over other variants that manipulated its average value
and timing.

Taken together, our results show 1) the robustness of observers’ ability
to recognize social contingency, 2) highlight the specific regions of a lis-
tener’s face used by observers to recognize contingency, and 3) determine
the expected dynamics of a listener’s contingent behaviour in response to
speech. In doing so, we showcase how simple system-identification con-
cepts can be deployed in versatile ways, ranging from probing machine-
learning black-box models to operationalizing internal representations of
cognitive abilities. Through this work, we develop an outline of the so-
cial transfer function as a possible parsimonious mechanism by which
observers can internally represent social contingency and, more broadly,
the mechanism of interpersonal predictive coding.

6.2 "All models are wrong..."

Beyond theoretical questions about the underlying mechanisms of social
contingency, the work presented in this thesis also raises some interest-
ing methodological questions which can be grossly summarized using
the aphorism attributed to British statistician George Box: "all models are
wrong, but some are useful" (Box, 1979). Of primary concern is the treat-
ment of the relationship between speech and backchanneling behaviour
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as a linear time-invariant system when it is well-established that such
conversational dynamics do not, in fact, satisfy these assumptions.

6.2.1 Linearity

Impulse responses make strong assumptions about the input-output phe-
nomenon, namely, linearity and time-invariance, (Keesman, 2011), and
therefore fail to represent a potentially large class of backchanneling be-
haviour that may have, e.g. non-linear, threshold-like qualities. For in-
stance, the simple FIR model used here could be replaced with more
advanced system-identification model structures like the Box-Jenkins
model (Section 2.1.2). Because the Box-Jenkins model accounts for past
outputs to generate new outputs and can handle non-stationarity (i.e.
changes in the average or baseline behaviour), it could better capture the
dynamics of contingent behaviour in an interaction where, for example,
the listener’s engagement decreases over time and leads to differential
frequency or timing of contingent responses. More generally, there are
other possible computational and cognitive architectures for learning a
conditional distribution p(y/x) between input and output that do not use
the formalism of transfer functions, such as discrete rules (e.g. detection
of a low-pitch region late in an utterance; Poppe et al., 2010) or condi-
tional random fields (Morency et al., 2008), and might be interesting al-
ternatives that future work could evaluate.

6.2.2 Time-invariance

The time-invariant aspect of our conception of the social transfer func-
tion assumes that there is an average first-order relationship between a
speaker’s speech and a listener’s backchanneling behaviour, which can
be learned and tested against new data. While an average first-order re-
lationship can always be computed, it may not be predictive of anything
if backchanneling is driven entirely by something else, like whether the
sentence is a question or answer or whether the interacting individuals
are in agreement or disagreement. Thus, the extent to which average
behaviour represented by an FIR actually explains observer judgements
of contingency remains an empirical question. In other words, we as-
sume that observers’ expectations of the dynamics of backchanneling be-
haviour is independent of absolute time and that recognition of social
contingency is thus driven by applying the same internal representation
to observed behaviour irrespective of the interactive context. Therefore,
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even though Chapter 3 shows that observer judgements are reasonably
consistent with predictions by our time-invariant model, its problem of
"context-invariance" remains unaddressed.

6.2.3 Context-invariance/Context-specificity

The FIRs learned in Chapter 3 and the speech extracts used to obtain
FIRs in Chapter 5 are both embedded in the singular context of an in-
troductory conversation during a speed-dating session involving, for the
most part, relatively neutral semantic content. It is thus likely that the
transfer functions we obtain are restricted to interactions within social
contexts involving affiliation, politeness and perhaps even shyness. This
excludes a lot of communicative variance driven, for instance, by famil-
iarity and contexts which allow disagreement and arguments (e.g. polit-
ical debates). Thus, it is entirely possible that while FIR predictions cor-
relate with observer ratings of contingency for interactions in the Speed
Dating corpus, they would not do so when applied to other kinds of in-
teractions. Moreover, results in Chapter 3 and Chapter 5 assume that
observers, through previous exposure and participation in social interac-
tions, develop similar schema of conversational contingency. It remains
an open question how this learning may operate and how plastic it may
be to factors like changing interactional cultures. For instance, there is
debate about whether backchanneling conventions that are not shared
across cultures (e.g. how much feedback one is expected to give) con-
tribute to misunderstanding or stereotyping as being too impatient or
unresponsive (White, 1989). Importantly, our proposed concept of social
transfer function is not intended as a mechanism to subtend backchan-
neling, i.e. we do not claim that a listener’s facial signals in response to
a speaker’s speech are determined by linear, time-invariant impulse re-
sponses. Rather, we propose social transfer functions as a parsimonious
way to encode third-party observers’ perception or evaluation of interac-
tive coupling.

It should be noted that in this thesis, we use the term ‘backchannel-
ing’ in a relatively generic sense as the ensemble of non-verbal facial be-
haviour of a listener while a speaker speaks, without necessarily distin-
guishing it by its function (e.g. linguistic or emotional) or underlying
cognitive processes (e.g. voluntary or not). Some may have explicit, vol-
untary communicative intent (e.g. nodding at the end of a statement to
signal agreement - McClave, 2000), or implicate emotional contagion (e.g.
smiling in response to a smile - Hess and Bourgeois, 2010), or may just
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be of a lower sensorimotor nature (e.g. periodic eye blinks coupled with
sentence dynamics - Jin et al., 2018; Kobald et al., 2019; Nakano and Ki-
tazawa, 2010). In judging social contingency, it is likely that third-party
observers use all of these cues, though some perhaps more contextually
than others.

6.3 "... but some are useful"

Despite the inherent limitations of our characterization of social transfer
functions, through the work presented in this thesis, we attempt to ad-
dress the question of whether they are a useful tool to model observer
perception of social contingency. We argue that operationalizing percep-
tion of contingency as transfer functions provides a testable, operational
mechanism with good parsimonious properties that allows making pre-
dictions and, combined with behavioural data, can help quantify social
contingency.

6.3.1 Parsimony

One question raised by our findings is whether social transfer functions
are uniquely related to judgements of social contingency, or to more gen-
eral judgements: we believe the latter to be true. While this work has fo-
cused on the detection of social contingency, it is interesting to question
whether social transfer functions, on different facial or bodily signals or
at different temporal scales, also support other types of social-cognitive
inferences that rely on dynamic predictions of conversational backchan-
neling. For instance, storing separate pre-learned TRFs for interactions
between familiar and unfamiliar agents (Gráczi and Bata, 2010) would
allow judgement of which is more likely to occur. Other examples would
be agreement (Müller et al., 2022) or even enjoyment (Li et al., 2010).
By providing a parsimonious representation of conversational dynam-
ics which can be learned from each individual, social transfer functions
could be promising as a way to study both how these constructs are sig-
nalled in ecological behaviour and to model how they are detected by
observers. Using social transfer functions for different constructs would
also imply the presence of flexible definitions of contingent dynamics
represented by distinct transfer functions that help construct more high-
level social judgements. Given the parsimonious nature of transfer func-
tions, it is likely that maintaining different internal representations of
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contingency for different contexts permits greater flexibility in recogniz-
ing contingent behaviour while being more cognitively efficient consid-
ering that storing it is more memory-efficient than storing numerous ex-
amples of input-output pairs or a conditional probability distribution - a
’computational trick’ also exploited in convolutional deep learning archi-
tectures (Mallat, 2016).

6.3.2 Versatility

Beyond their descriptive interest, social TRFs are also useful as ana-
lytical or generative tools. Analytically, how well the predictions of
transfer functions fit observed data provides a way to quantify the re-
alism/typicality of backchannel dynamics. This could be used to quan-
tify atypical conversational dynamics often observed in disorders such as
autism spectrum disorder (Wehrle et al., 2024), schizophrenia (Lucarini
et al., 2024), parental depression in caregiver-child interactions (Smith
et al., 2023) and disorders of consciousness (Hermann et al., 2018). So-
cial transfer functions would not only allow a qualitative characteriza-
tion of how the atypicality manifests in conversational dynamics but also
help extract the features based on which they are evaluated as atypical
by caregivers. For instance, future work could compare kernels obtained
from reverse correlation experiments on clinical practitioners and naive
observers to highlight the diagnostic features driving their perception of
atypicality.

Apart from their utility in understanding psychopathology, social
transfer functions could also function as a security measure to detect
forged AI videos (Li et al., 2018). Combined with modern facial anima-
tion techniques in avatars (Yu et al., 2012) or real-life videos (Arias-Sarah
et al., 2024), they can also be used to generate novel stimuli that have
specific dynamics, either for experimental control (e.g. synthesizing gaze
patterns as if they were driven by the transfer functions describing the
dynamics of smiles) or to improve synthetic media (e.g. manipulating the
perceived contingency of deep-faked conversations in human-computer
interaction - Kaate et al., 2023).

Within the broader context of this thesis, having obtained a general so-
cial transfer function of contingent responses in a specific interactive con-
text, future work could conduct reverse-correlation experiments involv-
ing random perturbations of that transfer function in different contexts
to extract a more refined picture of if and how the dynamics vary with
context. Similarly, the aforementioned problem of cultural differences in
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backchannel appropriateness could also be better understood by extract-
ing and comparing the social transfer functions associated with different
cultures.

6.4 Some final thoughts

In this thesis, we made an effort to achieve a mechanistic understand-
ing of the cognitive processes underlying social cognition. To this end,
we developed a methodological framework to study social contingency,
a fundamental building block of everyday social interactions, in terms of
the relationship between speakers’ speech and the facial signals of listen-
ers. While there exists a wealth of literature investigating the timing and
function of social signals in interactions, we hoped to develop computa-
tional models that could be used to form testable hypotheses by predict-
ing listener responses to speech and thus provide a way of explaining the
complex input-output relationship.

With the experimental work presented here, we showed that our math-
ematical formalization of social contingency as social transfer functions
can be quite useful in developing a clearer picture of the dynamics of
contingent behaviour. However, we are also cognizant of the fact that the
simplistic models used possess several limitations, which we detailed in
this final chapter. The issues of linearity and time-invariance, in partic-
ular, highlight that social transfer functions lack the necessary compu-
tational capacity to explain the intrinsic non-linearities of social inter-
active behaviour. However, we still made a concerted effort to extend
simple concepts and techniques based on the belief that inaccurate but
interpretable models are perhaps more conducive to understanding than
models that are accurate but opaque. We highlight this point using the
’computational interlude’ in Chapter 4, where we discuss the recent ex-
plosion of explainability in AI as a result of the single-minded focus on
model performance. As computational modeling becomes an increas-
ingly important part of cognitive science, it is important to be mindful of
this trade-off between complexity and interpretability in an area of study
where the primary goal isn’t simply approximating the outputs of cogni-
tive mechanisms but to understand them.
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Szczepocka, and Valeria Manera. The second agent effect: Inter-
personal predictive coding in people with schizophrenia. Social
Neuroscience, 14(2):208–213, 2019.

[172] James A O’sullivan, Alan J Power, Nima Mesgarani, Siddharth Ra-
jaram, John J Foxe, Barbara G Shinn-Cunningham, Malcolm Slaney,
Shihab A Shamma, and Edmund C Lalor. Attentional selection in
a cocktail party environment can be decoded from single-trial eeg.
Cerebral cortex, 25(7):1697–1706, 2015.

[173] Eleanor R Palser, Clare E Palmer, Alejandro Galvez-Pol, Ricci Han-
nah, Aikaterini Fotopoulou, and James M Kilner. Alexithymia me-
diates the relationship between interoceptive sensibility and anxi-
ety. PloS one, 13(9):e0203212, 2018.

134



[174] Marina A Pavlova, Jonas Moosavi, Claus-Christian Carbon, An-
dreas J Fallgatter, and Alexander N Sokolov. Emotions behind a
mask: the value of disgust. Schizophrenia, 9(1):58, 2023.

[175] Luiz Pessoa. The entangled brain. Journal of cognitive neuroscience,
35(3):349–360, 2023.

[176] Vitali Petsiuk, Abir Das, and Kate Saenko. Rise: Randomized in-
put sampling for explanation of black-box models. arXiv preprint
arXiv:1806.07421, 2018.

[177] Jean Piaget. Language and Thought of the Child: Selected Works vol 5.
Routledge, 2005.
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