The social transfer function: how dynamic predictions
of facial consequences drive judgements of social
contingency

Rudradeep Guha®*, Pablo Arias Sarah°, Jean-Julien Aucouturier®

@ Université Marie et Louis Pasteur, SUPMICROTECH, CNRS, Institut
FEMTO-ST, F-25000, Besangon, France
bSchool of Psychology and Neuroscience, Glasgow University, Glasgow, UK
¢Department of Cognitive Science, Lund University, Sweden

Abstract

Human social interactions abound with time-aligned multimodal information
such as nods and eyeblinks, yet little is known about how these cues contribute
to the detection of social contingency, i.e.- how exactly does one know that two
people are interacting with one another? We developed a novel experimental
paradigm in which observers discriminate between video recordings of genuine
and fake dyadic interactions based solely on the interplay between the speaker’s
speech and/or facial expressions and the listener’s facial backchanneling cues.
Using a combination of computational modeling using temporal response func-
tions (TRFs) and behavioral data from two independent experiments (N=206),
we show that observers perform above chance when recognizing genuine social
interactions; that, to do so, they causally rely on the link between the speaker’s
speech and the listener’s mouth and eye information; and that this inference
is driven by time-aligned, dynamic predictions rather than average quantities
of movement. In both experiments, judgements of social contingency are well-
predicted by a computational model that evaluates the agreement of observed
data with the output of a pre-learned “social transfer function” that dynamically
predicts the facial consequences of a given speech signal. These results provide
mechanistic insights into the features that contribute to perception of social
contingency, and could potentially be used to identify markers of contingency
in people with disorders of consciousness, autism and social anxiety.
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1. Introduction

Our daily social interactions are dynamic and complex endeavours that re-
quire quick and efficient coordination in real-time. Given the need to con-
tinuously detect multimodal signals, integrate them with high-level cognitive
inferences and produce appropriate responses within milliseconds, the ability
to detect contingent behaviour (i.e., recognizing that one signal is the social
consequence of another) is fundamental to social interaction (Coey et al., 2012,
Dale et al., 2013, Hermans et al., 2022). This ability is thought to develop
early in infancy primarily through caregiver-child interactions where the child
engages in goal-directed behaviour to draw attention or elicit contingent be-
haviour from caregivers (Brazelton et al., 1975, Goldberg, 1977, Rochat, 2001).
In the influential “television” paradigm of developmental psychology, 2-month-
old infants show distress when interacting with their mothers via a pre-recorded
video but not when engaged in a genuine real-time interaction (Murray, 1985),
suggesting that they possess the ability to jointly process the expressive signals
of the interlocutor and their own and how they should depend on one another.
In adulthood, recognition of social contingency is often considered a prerequi-
site to higher-level social behaviour such as joint attention (Mundy and Newell,
2007), turn-taking in conversation and theory of mind (Frith and Frith, 2012).

In spoken conversations, contingent social behaviour often manifests itself
through the phenomenon of backchanneling (Brunner, 1979, Knudsen et al.,
2020). Backchanneling cues can be non-verbal, encompassing a wide range of
physical behaviours like nods, blinks and smiles, or non-lexical utterances like
hmm and wh-huh which are signifiers of engagement or acknowledgement that
can deployed quickly and efficiently in conversations. Most research into facial
signals has either looked at them in the context of emotion expression or the
variety of semantic and pragmatic functions they play in conversations (Bavelas
and Chovil, 2018). For instance, the temporal structure of blinks is important
with short and long blinks signalling end-of-turn and understanding respec-
tively (Homke et al., 2017) while eyebrow raises purportedly serve to emphasise
information (Flecha-Garcfa, 2010). However, comparatively few studies have
investigated what specific backchanneling cues contribute to the detection of
social contingency, and how.

To provide mechanistic insights into the perception of social contingency,
a common strategy has been to degrade stimuli and only keep point-light dis-
plays of participant figures, and investigate which properties of these stimuli
facilitate their detection. For instance, one such study found enhanced visual
detection of a target agent within noisy point-light displays of two agents when
the dyads were moving synchronously as compared to asynchronously despite
the irrelevance of synchrony to the task (Neri et al., 2006). In another study,
point-light displays of two musicians who were either improvising together or
playing solo were spliced together to generate genuine and fake musical interac-
tions (Moran et al., 2015), and participants were able to tell them apart even in
the absence of music, or musical expertise (for the related question of recogniz-
ing biological motion in a single body, see also Nackaerts et al. (2012)). Such



studies paint a picture of a general ability for ‘interpersonal predictive coding’,
by which observers use the actions of one agent to predict both the content
and temporality of a second agent’s actions (Manera et al., 2011a). However,
while point-light stimuli allow quantifying the spatial coordination between in-
teracting bodies, and how it correlates with observer decisions, they do not
easily translate to vocal and facial features such as those observed in real-world
conversations (Takarae et al., 2021). Yet, we know that observers possess the
uncanny ability to match the time-aligned dynamics of such cues to external
stimuli (e.g., heartbeat: Galvez-Pol et al. (2022)). More importantly, although
these studies illustrate a predictive route to social contingency perception by
showing its sensitivity to e.g. time shifts or individual differences (Manera
et al., 2013, 2011b), they do not attempt to operationalize this mechanism in a
concrete model which can be used to make experimental predictions. What ex-
act temporal prediction, of which specific expressive signals, has to break down
before I - the observer of an interaction - decide that it isn’t genuine?

To address this question, we introduce a computational modeling paradigm,
the ‘social transfer function’, which assumes that observers possess a schema
of contingent interactions, acquired over time by observation and participation,
and which can generate real-time predictions of the temporal dynamics of a
backchanneling cue of an agent in response to the speech of another agent (Fig-
ure 1). At the algorithmic level, we instantiate such a ‘transfer function’ using
temporal response functions (TRFs; Crosse et al. (2016)), which assume linear-
ity and time-invariance of the system and can therefore be represented by an
impulse response H that is convolved with the input to generate the output
(Y = H® X). When observing A talking to B, we essentially propose that ob-
servers utilize something akin to pre-trained TRF to generate the likely output
of B as a response to A (in our algorithmic specification, H ® A), and that this
predicted output is then matched against the observed signal to quantify how
contingent the interaction appears to be.

To test this mechanism, we collected a corpus of video recordings of natural-
istic speed-dating interactions (Arias-Sarah et al., 2024), and extracted segments
from the videos that were ‘one-sided’ (i.e. where only one person was speaking
while the other just listened and backchanneled). We then created genuine and
fake extracts by replacing the real listener with another in half of the trials
and extracted the time-aligned time-series of the vocal and facial cues of each
participant using state-of-art signal processing algorithms. In two successive
behavioural experiments (N=18 and N=188), human observers were asked to
discriminate genuine vs fake (i.e. non-contingent) interactions. We investigate
whether social transfer functions learned from that dataset can predict observer
performance better than a simpler model based on average quantity of move-
ment; whether they can explain what exact facial features observers use for
processing contingency; and whether they predict how observers would perform
when parts of the stimuli are masked.
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Figure 1: The “social transfer function” computational modeling paradigm: to
operationalize how external observers judge the contingency of a social interaction (A), we
propose that observers possess a schema of contingent interactions acquired over time by
observation and participation (B). In this paper, we instantiate such a ‘transfer function’
using a temporal response function (TRF), i.e. a pre-trained impulse response that can
be convoluted with the input signal to generate real-time predictions (E) of the temporal
dynamics of an agent’s backchanneling cue in response to the speech of another agent (C).
This predicted output can then matched against the observed facial signal (D) to quantify
how contingent the interaction appears to be. In the following, we investigate whether social
transfer functions learned from a dataset of speed-dating interactions can predict observer
performance, as well as what facial features they use to detect genuine and fake interactions.



2. Study 1

In Study 1 (conducted in the lab), we ask participants to discriminate be-
tween genuine and fake audiovisual interactions assembled from a dataset of eco-
logical speed-dating conversations and explore whether their ratings are consis-
tent with a social transfer function model predicting a listener’s backchanneling
cues from a speaker’s speech.

2.1. Materials and Methods

2.1.1. Participants

N=18 (male=14; M=25.8, SD=10.04) native French speakers participated
in the study. Participants were recruited from the Master’s program at SUP-
MICROTECH. A priori power analysis using G*Power (Faul et al., 2009) de-
termined a required sample size of 21 for 70% power for a medium effect at a
significance level of o = .05.

2.1.2. Stimuli

Stimuli used in this work were extracted from a corpus of video recordings
of naturalistic speed-dating interactions, which we collected as part of a larger
project (Arias-Sarah et al., 2024).

Dataset participants: N=31 French-speaking participants (male=15; mean
age=22 [20-27]) were part of the dataset collection. All participants were hetero-
sexual, single, and were willing to participate in a real speed-dating experiment
where they would have the option to potentially connect with their partners at
the end of the experiment.

Dataset procedure: Participants were paired into M/F dyads such that
each male interacted with each female participant within that session. Each
dyad had a 4-minute conversation over a video-conferencing platform, while
seated in a windowless cubicle. The conversations were entirely unscripted: We
instructed participants to talk about any conversation topic they wanted with
their interacting partner for the whole duration of the interaction. We equipped
participants with Beyerdynamic DT770 pro headphones and recorded all inter-
actions with Logitech C920 webcams at 30 frames per second. We organized
data collection in batches of eight participants. For each batch, four males and
four females interacted with each other, following a round-robin design (Kenny
et al., 2020). We collected 4 batches of 8 participants in total. One female
participant was absent in one of the sessions. Thus, we collected a total of 60
interactions from 31 different participants.

Stimuli: From recorded conversations in the speed-dating dataset, we ex-
tracted n=305 segments lasting around 10 seconds (M=10.01 [5-26]) in which
only one person was talking while the other was silent and only displayed
backchanneling cues like nods, smiles and blinks. ‘Fake’ interactions were cre-
ated by putting together the recording of the original speaker with that of
another listener, i.e. not the listener the speaker was actually talking to. This
resulted in n=198 extracts (99 genuine and 99 fake).



Finally, for each genuine and fake interaction, we created 3 presentation
‘modalities’ of the same extract: one audio-video (thereafter: A-V) in which
the speaker could be heard but not seen (i.e. their video recording replaced by
a black screen), and the listener could be seen but not heard (i.e. their audio
recording replaced by silence); one video-video (V-V), in which both speaker
and the listener could be seen but not heard; and one audiovisual-video (AV-V)
in which the speaker could be seen and heard while the listener could only be
seen (Figure 2).

Dataset ethics: The dataset collection was approved by the Institut Eu-
ropéen d’Administration des Affaires (INSEAD) IRB. In accordance with the
American Psychological Association Ethical Guidelines, all participants gave
their informed consent and were debriefed and informed about the purpose of
the research after the experiment.

2.1.3. Procedure

Participants were presented 3 blocks of 66 video trials, each block containing
trials from one of the A-V, V-V and AV-V modalities. Blocks, and trials within
blocks were presented in random order, with short self-paced breaks in between.
No interactions were repeated, meaning that a given extract did not have a
genuine and fake ‘version’ but were completely separate interactions. After
each video extract, participants were asked to report whether they thought the
interaction was genuine (l-interval, 2-alternative forced choice). Participant
performance at the task was quantified using the d’ sensitivity index.

2.1.4. Social transfer functions

To model how well genuine/contingent interactions matched a prediction of
the temporal dynamics of the listener backchannel (facial cues) in response to the
speaker’s behaviour (speech), we used a combination of automated speech/face
analysis and the system identification technique of temporal response functions
(TRFs; Crosse et al. (2016)). First, we estimated the time series of perceived
loudness from the speaker’s speech in a given interaction, by computing the
RMS intensity of the vocal signal on successive 100ms windows and processing it
with a computational model of the auditory nerve (Zilany et al., 2014) designed
to reproduce features of loudness compression of the human auditory system
(a technique suggested to improve TRF modeling in Lindboom et al. (2023)
and Benghanem et al. (2024)). Then, we extracted the time series of 11 facial
action units (AUs) (AU12: lip corner puller, AU14: dimpler, AU15: lip corner
depressor, AU17: chin raiser, AU23: lip tightener, AU24: lip pressor, AU25:
lip part, AU26: jaw drop, AU28: lip suck, AU43: eyes closed, Pitch: head
nods; i.e. 1 eye, 1 head and 9 mouth-related AUs) from the listener’s video,
using the Py-feat library (Cheong et al., 2023), in such a way that both vocal
and facial time series were synchronized at the same frame rate. Finally, for
every AU, we trained a separate temporal response function (TRF) to model
the transfer function that converts the speaker’s speech into the listener’s facial
behaviour. TRFs were trained only on the subset of trials corresponding to
genuine interactions, in order to model the dynamical relation between speech



and face that is found in ecological social interactions. The TRFs were trained
using the ridge regression method as implemented in the mtrfpy toolbox (Bialas
et al., 2023).

Once trained, a TRF allows predicting an observer’s backchanneling response
(a series of AU intensity) to a specific speaker’s speech (a series of speech inten-
sity), by convolving the input speech with the TRF, based on the regularities it
managed to learn from the dataset. In any given interaction, the match between
the series predicted by convolution with TRF and the actual observer’s times
series can be evaluated using Pearson’s correlation coefficient r between the two
time series.

2.1.5. Statistical analyses

Participant performance was tested for statistical difference from chance level
(d’=0) with one-sample t-tests, and for differences across modalities (within-
participant) with paired t-tests (3 levels: A-V, V-V AV-V).

To evaluate whether genuine and fake trials physically differed in terms of
how well they matched the prediction of the TRF model, we compared Pear-
son correlation coefficients between the predicted and actual facial AU series
(thereafter: TRF fit) between groups of genuine and fake trials with two-sample
t-tests, corrected for multiple comparisons across the 11 AUs under consider-
ation. In addition, an SVM classifier was trained on the TRF fits and used
to predict whether a trial was genuine or fake to provide further evidence for
physical differences between genuine and fake trials.

To test whether the TRF fits of trials predict observers’ decision of genuine-
ness, we regressed individual observer ratings on each trial (binary: 0/1) using
a generalized (logistic) linear model (GLM) with a random effect on the ob-
server (response ~ TRF fit + intensity + (1|observer)). GLM analysis
was performed with the pymer4 package (Jolly, 2018).

2.2. Results

Participants performed significantly above chance at discriminating gen-
uine vs fake interactions (d' =0.53, ¢(17) = 10.23,p < .001). Performance
was markedly stronger when speaker behaviour was presented with audio (A-V
block: d' =0.71; AV-V block: d’ =0.68) than in video-only (V-V: d' =0.25,
smaller than A-V:t(17) = 4.31,p < .001; and AV-V:¢(17) = 4.11,p < .001).
There was no performance difference between the A-V and AV-V blocks (¢(17) =
0.33,p = 0.74). On the whole, this pattern of results was consistent with the
fact that observers in this task mostly relied on matching the facial features of
the listener with the vocal features of the speaker.

We then tested the hypothesis that genuine and fake trials physically differed
in terms of how well they matched a prediction of the temporal dynamics of the
backchanneling cues of the listener in response to the speech of the speaker. To
do so, we trained individual TRFs that linked the speaker’s speech intensity
with the listener’s backchanneling signals, for every action unit (AU), across
the subset of 99 genuine trials, and then compared the distribution of TRF
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Figure 2: Study 1. Left: Observers were presented audiovisual extracts from speed-dating
interactions in which only one person was talking while the other was silent and only displayed
backchanneling cues. Trials were presented in three possible ‘modalities’: audio-video (A-V,
top) in which the speaker could be heard but not seen (i.e. their video recording replaced
by a black screen), and the listener could be seen but not heard (i.e. their audio recording
replaced by silence); audiovisual-video (AV-V, middle) in which the speaker could be seen
and heard while the listener could only be seen; and video-video (V-V, bottom), in which
both the speaker and the listener could be seen but not heard. Right: Sensitivity (d’) over
participants was significantly above chance in all modalities, with better performance in A-V
and AV-V compared to V-V. Box-plot marking median values, inter-quartile range (IQR) and
data points within 1.5 IQR. *** marks statistical significance at the 0.001 alpha level (paired
t-tests)



fit between genuine and fake trials. Of the tested AUs, genuine trials had
statistically larger TRF fits than fakes along 4 (all of them mouth-related) of
them (AU12: (¢(196) = 2.78,p < .05), AU25: (¢(196) = 2.62,p < .05), AU26:
(t(196) = 2.63,p < .05), AU28: (t(196) = 2.92,p < .05), as well as for head
nods (¢(196) = 2.6,p < .05). This suggested that the genuine and fake stimuli
in our task indeed differed with respect to how much they matched pre-learned
dynamic predictions of backchanneling, most apparently on listener nods and
mouth reactions such as smiling.

We also tested whether such physical information was computationally suffi-
cient to accurately discriminate genuine and fake trials, by training a machine-
learning classifier on the trial’s TRF fit. 5-fold cross-validation was used to train
an SVM classifier on a predefined set of parameter values to find the optimal
parameters, which were then used to fit the final classifier on the training set.
On the testing set, the SVM reported a classification accuracy of 58%.

Finally, we tested whether human observers’ behaviour was consistent with
this information by predicting observed responses from both dynamic and static
quantities of motion. Generalized linear models were statistically significant
for the dynamic TRF fit (but not their static quantities) only for AU25 (8 =
—0.75, Peorrected < -05) and AU43 (8 = —0.78, Peorrected < -05). This suggests
that participants behaved as if they used dynamic prediction for cues in both
the mouth area, as predicted above, as well as the eyes.

Observing the dynamics of the AUs used to discriminate between genuine
and fake contingent behaviour (AU25 and AU43) reveals that both TRFs con-
tain strong early negative components around 300ms, and that their peak ac-
tivations are offset by around 1s, with AU25 peaking early at ~1s and around
~2s for AU43. We also see AU43 activity being inhibited for almost the entire
duration of AU25 activation (shaded area in Figure 5).

2.8. Discussion

Study 1 investigated observers’ ability to detect contingent behaviour in
dyadic interactions. We manipulated trials such that they contained varying
amounts of multimodal signals and found that participants performed above
chance in all modalities, with the best results when observing a speech-to-face
configuration. Finally, we tested whether genuine trials could be recognized,
both by humans and machines, based on dynamic “transfer-function” predic-
tions of backchanneling and found that they predicted observer ratings over and
beyond what could be predicted by static quantities of motion, based on the
listeners” mouth and eye action units.

The fact that participants performed above chance at the task confirms that
detecting social contingency is a robust human ability, one that is plausibly
used as a building block for higher-level social cognitive functions (Frith and
Frith, 2012). Observing the absence or asynchrony of interactive responses in a
conversation could be considered the third-person equivalent of the classic ‘still
face’ paradigm of developmental psychology, in which adults interacting with
infants are asked to freeze and cease to respond for a set period. It was shown
that infants from around 4 weeks show sensitivity to such disruptions (Happé
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Figure 3: The expected facial dynamics of social contingency: Two temporal response
functions (TRFs) allowed statistically significant prediction of observer decisions of genuine-
ness, based on both a mouth- (AU25, lip part, orange) and an eye-related action unit (AU43,
eyes closed, black). Comparison of these TRFs, or impulse responses (x-axis: time, y-axis:
amplitude), reveal different expected timings for contingent facial responses in each of these
AUs. Both TRFs contain strong early negative components around 300ms but their peak
activations are offset by 1s, with AU25 peaking early at ~1s and AU43 peaking around ~2s.
We also see AU43 activity being inhibited for almost the entire duration of AU25 activation
(shaded area).
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and Frith, 2014), and it may therefore only appear logical that adults should
also perform well at a similar task. In the present task though, the manipulated
contingencies were not plain interruptions but rather desynchronized behaviour
in which backchanneling from one conversation was paired with another unre-
lated conversation. The robust sensitivity of adults to such ecological variations
suggests that contingency is a graded evaluation built on cumulative evidence
of synchronized or desynchronized behaviour. It should be noted, however, that
the good performance achieved in this experimental paradigm (mean d’=0.53)
should not be taken as a psychophysical measure of sensitivity, as fake interac-
tions were paired “as found” in the speed-dating dataset, and may vary in terms
of the perceptual evidence in favour of contingency or the lack thereof. Study
2 will attempt to replicate these results in a dataset with more controlled task
difficulty.

In our task, participants performed worse in the silent V-V modality than
in the other two and they did not perform more accurately when provided the
speaker’s video (AV-V) in addition to its recorded speech (A-V). This pattern
of results appears at odds with a large literature suggesting a facilitating effect
of multimodal signals in social cognitive judgements such as emotion recogni-
tion or mimicry (Krumhuber et al., 2023). For instance, a study with a similar
paradigm investigated whether multiple modalities in face-to-face dyadic in-
teractions facilitate or interfere with language processing (Drijvers and Holler,
2023). To test this, they had 30-second extracts of a speaker talking to their
conversation partner uninterrupted and presented the trials in three conditions:
audiovisual (AV), audiovisual + mouth blurred (AB), and audio only (AO).
Participants were better at shadowing speech when they received multimodal
signals suggesting that they had a facilitatory effect and did not increase cog-
nitive load. Results in the present paradigm are likely explained by the fact
that the task required comparing two simultaneous streams of data (a speaker’s
and a listener’s) from a third-person perspective. In such a situation, simul-
taneous video modalities (AV-V, VV) require spatially dividing one’s attention
among the two ongoing streams (looking left, looking right) leading to difficul-
ties processing cues of asynchrony between the two. On the other hand, the A-V
modality requires processing the alignment of sound with a single video stream
which is comparable to judging multimodal signals from a single talking head,
and may therefore lead to better performance (and no advantage upon further
adding the speaker’s video information). It is interesting to ponder whether
such cognitive limitations in e.g. judging the contingency between two concur-
rent visual streams may have lead to the development of abilities that favour
the detection of speech-to-face over face-to-face coordination and whether the
preference for one modality or another depends on the timescale of the coordi-
nation: fast (milliseconds) for facial backchannelling, plausibly slower for other
types of joint action explored in previous dyadic visual tasks (Neri et al., 2006,
Moran et al., 2015).

TRF analysis of the speaker’s speech loudness and the listener’s facial action
units revealed that genuine interactions were characterized by systematic ‘social
transfer functions‘, predominantly at mouth action units (AUs 12, 25, 26 and
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28) and head nods. TRFs peaked between 1.5-2s for the majority of mouth
AUs, and at ~2.5s for head nods (Figure 1-D), which suggests slower dynamics
for the latter. This pattern of results is consistent with previous descriptions of
the dynamics of backchanneling in the non-verbal behaviour literature (Homke
et al., 2018, Boudin et al., 2024). Moreover, the dynamics of the AUs important
for perceiving contingency (AU25 and AU43) reveal the inhibitory behaviour of
blinks until the offset of AU25. It is possible that blinks that would normally
have occurred are suppressed, suggesting that blinks could function as an index
of the end of an expression.

The fact that genuine and fake trials differ in how well they match TRF fits
for these AUs does not imply, of course, that observers actually use that infor-
mation to do the task. Here, we have presented two separate streams of evidence
that speak to this question. First, we used a machine classifier to show that
TRF fit provides sufficiently discriminating information to reach similar levels
of performance as human observers. While such machine arguments do not con-
clusively indicate that observers use the same cues, they provide an important
proof-of-possibility that these cues would support such an inference if they did
(for similar arguments, see e.g. (Goupil and Aucouturier, 2021, Piazza et al.,
2017, De Boer and Kuhl, 2003)). Second, we found that observer judgements of
genuineness, regardless of correctness, correlated with TRF fit, over and beyond
static quantities of motion at AUs 25 and 43. While such correlations suggest
that trials that match dynamic predictions of facial consequences are the same
trials that observers also judge more likely to be genuine, they remain descriptive
and do not provide a formal test of causality (Casadevall and Fang, 2008). For
instance, it could be that while genuine trials indeed contain TRF-predictable
eye or mouth backchanneling, they also provide other cues either at locations
(e.g. pupil size (Hess and Petrovich, 2014, Kret, 2018, Goswami et al., 2020))
or at dynamical scales that are not captured by AUs and the TRF methodology
used here. Consequently, perhaps it is this latter information that influences
observer ratings. Study 2 below will provide a more causal test of the influence
of the eye or mouth region in the perception of contingency by using dynamic
masks to prevent observers from processing information in these regions.

Finally, the current analysis left some ambiguity as to what exact cues are
used by observers in the task: while machine classifiers suggest that genuine and
fake trials did not differ in terms of eye-TRF fit (but only in terms of mouth
predictions), both mouth- and eye-TRF fits correlated with human observer
ratings. Because of the correlational nature of these results, this may indicate
a number of relations between these variables: e.g., that both face regions are
in fact discriminative and utilized, but in a way that is not captured by our
automated AU analysis; that only mouth information is useful but that observers
are also biased to use eye information (even if counterproductive); that mouth
and eye predictions are ecologically correlated in the dataset, etc. While all
of the relations can in principle be explored by further correlational analysis,
Study 2 below will address the question more conclusively by presenting stimuli
that only contain one or the other type of information to a new, larger sample
of participants. If eye-TRF fit is not discriminative, then performance should
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collapse when presented with eye-only trials.

3. Study 2

Study 1 established that observers were able to discriminate between backchan-
neling in genuine and fake interactions, and showed that dynamic predictions of
the facial consequences of speech based on prelearned “social transfer functions”
(i.e. TRF fit) in the mouth and eye were consistent with such judgements. It
potentially provides a mechanism explaining the detection of social contingency
in human observers (but also leaves ambiguity about whether both mouth and
eye information is actually utilized and/or useful).

Study 2 aims to replicate these results, and provide a more conclusive causal
test of this hypothesis, by presenting a new, larger sample of participants with
stimuli manipulated with dynamical visual masks to present only eye or mouth-
area dynamic information. In addition, Study 2 also controls the baseline
difficulty of the task by selecting equal numbers of correctly and incorrectly-
recognized stimuli (based on the ratings of Study 1 participants).

3.1. Materials and Methods

Participants: We recruited N=188 participants through Prolific in a between-
subject design with approximately 65 participants in each condition (Neyes =
61, male = 39, M = 31.53,SD = 9.76; N,pouth = 67, male = 39, M = 31.17,5D =
10.66; Noriginar = 63, male = 36, M = 30.84, 5D = 10.77). Participants gave
their informed consent and were compensated at a standard rate. An a priori
power analysis conducted using G*Power (Faul et al., 2009) found the mini-
mum sample size required in each group to be n = 64 to obtain 80% power for
detecting a medium effect at a = .05.

Stimuli selection: Stimuli for Study 2 were selected as a subset of stimuli
from Study 1, to control the difficulty of the task more formally. Because V-
V stimuli were not recognized accurately in Study 1, and AV-V trials did not
provide any performance advantage over A-V, Study 2 was restricted to A-V
stimuli. To select the subset, we classified the n=66 A-V trials of Study 1 as hits,
misses, correct rejections or false alarms based on the most frequent decision
made by Study 1 participants and selected n=30 stimuli controlled for difficulty
in each of the four signal-detection categories, resulting in a total of 120 A-V
stimuli (see Supplemental Information for detail).

Stimulus manipulation: Trials were further manipulated by creating dy-
namic visual masks that isolated specific parts of the face in the listener’s video
while hiding everything else (Figure 4). We used the DaVinci Resolve software
(Blackmagic Design) to track a manually-specified rectangle centred either on
the eye or mouth region in the video recordings and manipulated the outside
of the rectangle at zero pixel intensity. This yielded 3 different versions of each
AV-V trial where the speaker’s audio was played over a video that featured ei-
ther the complete face area (“original”, same as Study 1), only the eye region
(“eye” condition), or only the mouth (“mouth” condition).
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Figure 4: Study 2. Left: AV-V trials from Study 1 were manipulated by creating dynamic
visual masks that isolated specific parts of the listener’s video while hiding everything else.
This yielded 3 different versions of each trial where the speaker’s audio was played over a
video that featured either the complete face area (‘Original’, bottom), only the eye region
(‘Eyes’ condition, top), or only the mouth (‘Mouth’ condition, middle). Right: Sensitivity
(d”) was significantly better for participants in the Eyes condition than in the Mouth condition
and viewing the trials in the Original condition, i.e. the full non-masked videos, conferred no
performance advantage over the conditions with manipulation.

Procedure: Participants were presented with 40 stimuli in either one of
the three conditions, between subjects (eyes: N=61; mouth: N=67; original:
N=63). In each condition, the task was the same as in Study 1 with partici-
pants watching the videos and rating each interaction as either genuine or fake
(1-interval, 2-alternative forced choice). A previous version of this task was pi-
loted with n=20 offline participants and a within-subjects design as opposed to
between-subjects, but was changed due to the discovery of order effects.

3.2. Results

Results replicated the results of Study 1, with performance significantly
above chance for the original, full-information videos (d’ = 0.21,¢(62) = 3.70,p <
.001). Performance was also above chance for the eyes condition (d' = 0.24,¢(60) =
6.06,p < .001), with no difference from original videos (¢£(122.0) = 0.46,p =
0.65), but significantly greater than in the mouth condition (¢(126.0) = 2.57,p <
.05). The mouth condition was not significantly above chance (d’ = 0.09, t(66) =
1.84,p = .07), but it wasn’t significantly lower than the original condition either
(£(128.0) = —1.73,p = 0.09).

We further reproduced the TRF analysis of Study 1 in the original condition.
Because the masking in both manipulated conditions rendered Py-feat unable to
detect faces for subsequent AU analysis, we only analysed stimuli in the original
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condition. We used generalized linear models to test whether participant re-
sponses in the original condition correlated with the TRF fit and average inten-
sity of AU25 and AU43 (response ~ AU25 fit + AU25 intensity + AU43
fit + AU43 intensity + (1|participant)) and found only AU25 TRF fit
(8 =1.39,p < .001) and AU43 TRF fit (8 = 0.70,p < .001) to be significant
predictors.

3.8. Discussion

By adopting a causal manipulation design in which we isolated either eye or
mouth information in a more controlled subset of stimuli from Study 1, Study
2 provided a strong test of observers’ use of information in the eye and mouth
regions and provided causal evidence that participants can use either eye or
mouth-region information to judge social contingency in conversations.

In addition, we found no statistical evidence in the original condition to
suggest any performance improvement on providing participants with complete
face information. This not only suggests that no other facial cues besides the
eye and (to a lesser extent) the mouth provide any discriminating information
for contingency (replicating the only 2 Bonferroni-corrected AU predictors in
Study 1), but also that participants did not utilize the interaction between the
eye and mouth to any avail. This suggests that dynamic predictions of eye and
mouth activity constitute redundant cues/signals for the aim of detecting social
contingency, a property that contrasts with other types of facial inferences which
typically utilize a dynamic and complementary hierarchy of signals over time
(Jack et al., 2014).

Moreover, Study 2 replicated the results seen in Study 1 in that the TRF
fit of both AU25 and AU43 correlated with participant ratings in the original
condition and static intensity information did not. Taken together, this pattern
of results strongly suggests that dynamic predictions of facial consequences in
both the eye and mouth regions of listeners constitute a mechanism for third-
party observers judging social contingency.

In particular, Study 1 left some ambiguity about whether dynamic eye in-
formation was used or even useful. Results in Study 2 established that it was
indeed the case and that eye-only performance was significantly better than
looking only at the mouth. This result is therefore consistent with TRF pre-
dictions in Study 1 and in the ‘original’ condition of Study 2, but not with the
physical comparisons and machine classifications of Study 1 which showed that
stimuli only differed on mouth-AU predictions. One reason might be that the
action unit detector used in this study only provides data for one eye-related
AU (AU43), but several different AUs for the mouth. Subsequently, the model
may fail to capture important from the eyes (e.g. gaze direction - (Conty et al.,
2006, Canigueral and Hamilton, 2019, Wahn et al., 2022)), which our human
observers are instead able to exploit.
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4. General Discussion

While previous research has repeatedly shown that detecting contingency in
conversational backchanneling is a robust human ability, and that it is likely an
important precursor to developing higher-level social cognitive skills, very little
is known about what specific backchanneling cues contribute to the detection of
social contingency, and how. In this article, we introduced a novel behavioural
paradigm in which participants were asked to identify genuine contingent be-
haviour in recorded video interactions. We manipulated both the contingency
(genuine or fake) and the nature of information present in the interactions, ei-
ther through different audio-visual modalities (Study 1) or by masking parts of
the listeners’ faces (Study 2). Consistent between the two studies, our results
showed that observers perform above chance when recognizing genuine social
interactions; that, to do so, they causally rely on the link between the speaker’s
speech and the listener’s mouth and eye information; and that this inference
is driven by time-aligned, dynamic predictions rather than average quantities
of movement. In both experiments, judgements of social contingency are well-
predicted by a computational model that evaluates the agreement of observed
data with the output of a pre-learned “social transfer function” that dynamically
predicts the facial consequences of a given speech signal.

The fact that, across two experiments and two independent samples of par-
ticipants (N=18 and N=180), we found replicated evidence that participants
were above chance at discriminating fake from genuine backchanneled interac-
tions, even when severely degraded to contain only part of the face, confirms
that social contingency detection is a robust social-cognitive capacity in adult
observers - and that our paradigm is a robust task to study this capacity. In
particular, observers were able to do the task even when the speaker’s face was
masked (Study 1, A-V condition) and showed no drop in performance when the
listener’s video only featured a small rectangle of dynamic information around
the eye, or the mouth region (Study 2). This suggests that observers have de-
veloped highly redundant models of contingency that can exploit partial infor-
mation and are therefore adaptive to a variety of interactional circumstances.
This is at odds with other forms of facial signalling such as the inference of
emotional expressions, which often critically depend on the availability of one
single cue to disambiguate alternative inferences (e.g. eye information for fear
recognition, (Adolphs et al., 2005), mouth/nose information for disgust Pavlova
et al. (2023)), and is consistent with the idea that social contingency detection
may be an early developmental stepping stone towards such higher-level forms
of social inferences.

Both studies found repeated evidence that to detect contingency, observers
relied on dynamic predictions of facial consequences. This was manifest in
3 types of correlational analyses showing that such predictions discriminated
genuine from fake trials; that they provided enough information for a machine
classifier to do the task; that participant responses correlated with how well
backchanneling signals in the eye and mouth AUs were predicted dynamically,
but not with their average activity. Study 2 also provided causal manipulations
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Figure 5: The complex choreography of facial expressions for social communication.
TRFs for each AU projected onto low-dimensional Euclidean space using multidimensional
scaling such that the similarity/distance between each in high-dimensional input space is
maintained. (A and B) highlight that the dynamics of mouth-related AUs converge to a
similar temporal structure, while (C), on the other hand, reveals the distinct but sequential
nature of the activations of AUs 25, 26 and 28 shining a light on the complex choreography
involved in the composition of facial expressions for social communication. (D) shows the
dynamics of AU12 (smile) and AU43 (blink) with inhibition of blinks prior to a smile followed
by blink onset simultaneously with smile offset.

to confirm that information restricted to these two face regions was sufficient
to do the task. Taken together, this pattern of results strongly suggests that
pre-learned models that enable the dynamic prediction of facial consequences in
the eye and mouth regions of listeners constitute a mechanism by which third-
party observers judge social contingency - which we proposed as ‘social transfer
functions’.

In this work, we implemented such social transfer functions using tempo-
ral response functions (TRFs; Crosse et al. (2016)). While they make strong
modeling assumptions on the system (more below), TRFs offer a particularly
parsimonious representation of what a predictive model of backchanneling could
look like: namely, an impulse response to which the speaker’s input speech is
convolved to generate the listener’s facial output. Once trained, social TRFs
can be compared e.g. across action units, or dyads/individuals. Here, using
training data from an ecological dataset of speed-dating conversations, we were
able to derive TRFs for predictive action units (AUs) in both the eye and mouth
regions.

Apart from contingency, the TRFs obtained also provide insight into the
temporal dynamics of action units in naturalistic conversations. We show that
TRFs can capture the dynamics of facial expressions allowing the grouping of
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expressions or AUs that have similar dynamics such as those of AUs 12, 14 and
15 with comparable peak latencies at around 1.8s (Figure 5A), as well as AUs
23 and 24 with both containing multiple peaks at 1 and 2.5s (Figure 5B). The
remarkably similar temporal structure of some of these AUs could potentially
be difficult to disentangle and confound the outputs of the increasingly popular
automated AU detection models. Other than grouping AUs based on similar
dynamics, TRF's also allow comparisons between the chronometry of AUs that
are supposed to be physiologically related - for example, Figure 5C reveals that
AU25, AU26 and AU28 are activated sequentially over the course of 1s peaking
at 0.9s, 1.4s and 1.7s respectively. Comparing AUs such as these with varying
temporality can also shine a light on interesting relationships between them as
in the case of AU12 (smile) and AU43 (blink) (Figure 5D) where we see a blink
being inhibited prior to the onset of a smile and ultimately occurring not quite
after the smile offset but simultaneously with it, an observation in line with
the literature on the temporal coordination of smiles and blinks (Trutoiu et al.,
2013, Rupenga and Vadapalli, 2016). More generally, we show that observ-
ing the dynamics of AUs with this methodology can facilitate the discovery of
‘groups’ of seemingly disparate AUs and provide insights into how the complex
choreography of facial expressions compose meaningful social signals.

Beyond their descriptive interest, social TRFs are also useful as analytical or
generative tools. Analytically, how well TRF predictions fit observed data (as
implemented here e.g. with Pearson’s correlation) provides a way to quantify
the realism/typicality of backchannel dynamics. This could be used to quantify
abnormal conversational dynamics (e.g. turn-taking patterns in schizophrenia -
(Lucarini et al., 2024)), or as a security measure to detect forged Al videos (Li
et al., 2018). If combined with modern facial animation techniques in avatars
(Yu et al., 2012) or real-life videos (Arias-Sarah et al., 2024), social TRF's can
also be used to generate novel stimuli that have specific dynamics, either for
experimental control (e.g. animate the eyes as if they were driven by the mouth
TRF) or to improve synthetic media (e.g., manipulate the perceived contin-
gency of deep-faked conversations in human-computer interaction - (Kaate et al.,
2023)).

More generally, the concept of a social transfer function, as implemented
here with TRFs, provides an operational mechanism for the general ability of
"interpersonal predictive coding’, by which observers use the actions of one agent
to predict both the content and temporality of a second agent’s actions (Manera
et al., 2011b). While the mechanism in this study provides accurate predictions
of e.g., how much a trial appears genuine, or what part of a trial is used for
such inference, this study leaves several important questions unanswered. First,
we trained TRFs from an ecological dataset of interactions assuming the exis-
tence of a similar schema of conversational contingency in observers developed
through previous exposure and participation in social interactions. It remains
an open question how this learning may operate, and how plastic it may be to
e.g. changing interactional cultures. For instance, there is debate about whether
backchanneling conventions that are not shared across cultures (e.g. how much
feedback one is expected to give) contribute to misunderstanding or stereotyp-
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ing, such as being too impatient or, contrarily, unresponsive (White, 1989),
and this process of cross-cultural adaptation to what constitutes appropriate
contingency can be framed as a social transfer-function learning problem.

Second, it is also unknown how social transfer functions are cognitively rep-
resented, or even if they are at all. While we argue here that convolution with
an impulse response is a particularly parsimonious form for representing an
input-output mapping (a computational ‘trick‘ also exploited in so-called convo-
lutional deep learning architectures (Mallat, 2016)), it remains an experimental
question whether human observers indeed encode and decode interactions this
way. In particular, impulse responses make strong assumptions on the input-
output phenomenon (namely, linearity and time-invariance, (Keesman, 2011)),
and therefore fail to represent a potentially large class of backchanneling be-
haviour that may have e.g. non-linear, threshold-like qualities. It would be
interesting to compare TRFs with more advanced transfer function learning
techniques in their ability to predict contingency judgements, to achieve better
understanding of what human observers typically consider “contingent”. More
generally, there are other possible computational and/or cognitive architectures
for learning a conditional distribution p(y/z) between input and output that do
not use the formalism of transfer functions, such as discrete rules (e.g. detection
of a low-pitch region late in an utterance - (Poppe et al., 2010)) or conditional
random fields (Morency et al., 2008), and these may also be alternative mecha-
nisms that future work could evaluate.

Finally, while this work has focussed on the detection of social contingency,
it is interesting to question whether social transfer functions also support other
types of social-cognitive inferences that rely on dynamic predictions of conver-
sational backchanneling, such as judging familiarity (Gréczi and Bata, 2010),
agreement (Miiller et al., 2022) or even enjoyment (Li et al., 2010) in interac-
tions. By providing a parsimonious representation of conversational dynamics
which can be learned from each individual, social transfer functions such as
TRFs appear promising as a way to study both how these constructs are sig-
nalled in ecological behaviour, and to model how they are detected by observers.
From a clinical perspective, social transfer functions may also provide valuable
insights into disorders affecting conversational dynamics such as autism spec-
trum disorders (ASD) (Wehrle et al., 2024) or parental depression in caregiver-
child interactions (Smith et al., 2023) and disorders of consciousness (Hermann
et al., 2018).
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