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1
Introduction

Beyond words themselves, our speech carries para-verbal information that conveys atti-

tudes, emotions and intentions, often through prosody – the so-called melody of speech

(Côté, Payer, Giroux, & Joanette, 2007). Prosody serves a variety of communicative func-

tions, including emotional prosody (e.g., expressing happiness, anger or sarcasm through

tone) and linguistic prosody (e.g., marking emphasis, syntactic boundaries or distinguish-

ing questions from statements). Elements such as pitch/intonation, rate/speech rhythm,

and timbre/articulation play a crucial role in expressing both emotional and linguistic

meanings. However, following a brain stroke, particularly one affecting the right hemi-

sphere, the ability to perceive or produce prosody can be significantly impaired, hindering

effective communication (Etchepare & Prouteau, 2018). Although up to 54% of patients

with right hemisphere damage exhibit deficits in prosodic comprehension (Blake, Duffy,

Myers, & Tompkins, 2002), these impairments are often subtle and less noticeable than

aphasia or motor dysfunction, resulting in underdiagnosis and insufficient treatment. Ex-

isting diagnostic tools, such as the Montreal Battery for the Evaluation of Communication

(MEC; Joanette, Ska, and Côté (2004)), provide simple thresholds of performance but

lack the sensitivity, specificity, and depth required to uncover the cognitive mechanisms
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underlying prosody deficits (Benedetti, Weill-Chounlamountry, Pradat-Diehl, & Villain,

2022).

The goal of this thesis is to improve the diagnosis and comprehension of deficits of

prosody perception after a brain stroke by capitalizing on an emerging psychophysical

technique : reverse correlation (Neri, Parker, & Blakemore, 1999).

When studying the neural mechanisms that relate physical stimuli to perception, the

modern field of psychophysics has indeed largely moved from simply measuring sensory

thresholds and psychometric functions and now provides a toolbox of techniques to mea-

sure and fit multi-staged models able to simulate participant behaviour. Notably for the

example of speech prosody, the psychophysical technique of reverse-correlation (or “clas-

sification images”; Murray (2011)) allows estimating, at the individual level, what sensory

representations subtend the normal or abnormal perception of, e.g., interrogative prosody

(Ponsot, Burred, Belin, & Aucouturier, 2018).

This thesis consists of 10 chapters, organized into 4 parts. Part I provides theoretical

foundations for this work. Chapter 2 introduces the biological foundations for what

speech prosody is, for prosody perception deficits after right-hemisphere (RH) stroke and

outlines the limitations of current clinical assessment tools. In Chapter 3 we describe the

history of psychophysical experiments and reverse-correlation method and explain how

it can be used to extract Internal representation (from the cross-correlation of response

and stimuli) and estimate internal noise, which reflects the response consistency in these

experiments.

Part II provides a first reverse-correlation encounter with clinical data, leading to

the definition of the thesis’ specific problem statement. Chapter 4 presents the applica-

tion of reverse correlation to model differences in linguistic prosody processing between

healthy participants and RH stroke survivors and introduces new behavioral biomark-

ers of prosodic processing that also correlate with clinical measurements. This work

was conducted in collaboration with Mélissa Jeulin, Emmanuel Ponsot, Pauline Bardet,

Pauline Commère, Lionel Naccache, JJ Aucouturier and Marie Villain and was published

in Scientific Reports journal in 2024 as “A simple psychophysical procedure separates

representational and noise components in impairments of speech prosody perception after



12

right-hemisphere stroke” (Adl Zarrabi et al., 2024). Based on this initial analysis, Chapter

5 identifies a number of limitations of existing state-of-the-art techniques for analyzing

reverse-correlation data, which make them unsuitable for our patient population, who

differ from controls by their fatigability, low consistency, and tendency to perseverate in

their responses.

Part III introduces the main methodological contributions of the work. Chapter 6

introduces three novel internal noise estimation methods that address the limitations

identified in Chapter 5. As the time of submitting this manuscript, we are preparing a

paper on this work in collaboration with Ladislas Nalborczyk , JJ Aucouturier and Marie

Villain. In Chapter 7, we then introduce a novel kernel estimation procedure based on

the GLM-HMM architecture (Ashwood et al., 2020) which is able to estimate states of

perseveration.

Finally, in Part IV, we apply these new techniques for a re-analysis of our clinical

dataset. In Chapter 8, we study how new estimates of reverse-correlation parameters

agree and complement existing gold standards for the diagnosis of prosodic impairment.

Finally, in Chapter 9, we provide an exploratory analysis of what factors may influence

perseveration in patients.

Last chapter concludes the thesis by summarizing the key findings, reflecting on their

broader implications, and suggesting future directions for both clinical applications and

methodological advancements.

This work has been supported by a grant from Fondation pour l’Audition (FPA RD

2021-12).
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Part I

Theoretical foundations
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2
Biological foundations: Prosodic deficits

after a right-hemisphere brain stroke

This thesis focuses on providing a new clinical assessment tool for a specific communication

disorder affecting brain stroke survivors: aprosodia, or the inability to process the melody

of speech. In part I, we provide some of the theoretical and methodological foundations for

this work. In this first chapter, we provide some of the biological context to appreciate the

construct of speech prosody (section 2.1), the clinical context of function disorders after a

brain stroke (section 2.2), and the specific assessment of aprosodia (section 2.3). The next

chapter will focus on providing methodological foundations for our proposed approach to

improving the assessement of aprosodia, namely psychophysical reverse correlation.
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2.1 Speech Prosody

2.1.1 Components of prosody

In spoken communication, how something is said can be just as important as what is said.

Often referred to as the “melody of language” (Hellerman, 2003), prosody encompasses

the song-like vocal modulations that shape meaning, express emotion, and clarify intent

beyond the literal content of speech. For example, pauses can disambiguate syntactic

structure (e.g., “the dog went into the kennel” vs. “the dog, lying in the kennel”), while

changes in intonation can signal interrogative versus declarative intent (e.g., “he’s coming

tomorrow” vs. “he’s coming tomorrow?”).

In linguistic terms, prosody typically refers to the suprasegmental (i.e., spanning sev-

eral phonemes) features of speech: rhythm (Cummins, 2000), intonation (Bolinger, 1958),

intensity, and duration. It overlays phonemic content with information that modulates

meaning and convey emotional or structural nuance. Additional features such as jit-

ter (pitch variation) and shimmer (amplitude variation) contribute to voice quality, and

may or may not be considered prosodic based on whether they correspond to pathological

speech (Kreiman, Gerratt, & Gabelman, 2002) or have expressive function (Anikin, 2020).

Intonation (Figure 2.1) is perhaps the most salient acoustic cue in prosody and is

defined by both its absolute height (pitch, which is the psychological correlate of funda-

mental frequency/f0) and its contour (e.g., rising, falling, or level pitch). These variations

are detected early during auditory processing (Tang, Hamilton, & Chang, 2017) and un-

derlie the perception of melody in both speech and music (dong Wang, Wang, & Chen,

2013; Plack, Oxenham, Fay, & Popper, 2005). In tonal languages like Mandarin, pitch

contours directly alter word meaning; in non-tonal languages like French or English, they

shape intonation patterns crucial for interpretation (Ponsot, Burred, et al., 2018). In this

thesis, we will operationalize the processing of speech prosody primarily by looking at the

perception of pitch contours.
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Fig. 2.1 Illustration of variations of intonation that can be applied to convey a single sentence
(French phrase: “je suis en route pour la réunion” / “I’m on my way to the meeting”).
a constant upward shift in mean pitch, for instance associated with positive emotion; b
pitch inflection with an initial rise fading after 500 ms, for instance associated with high
emotional arousal; c pitch oscillations (vibrato), typically signaling negative arousal
such as anxiety or fear. Figure adapted from Rachman et al. (2017) where the variations
were algorithmically generated. Red lines indicate the prosodically modified pitch
contours.

2.1.2 Functions of prosody

The production of prosodic cues has several distinct functions, which are often studied in

distinct research communities.
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2.1.2.1 Linguistic Prosody

By providing information on top of the purely lexical sentence level, prosody can first

play a crucial role in signaling grammatical structures, emphasizing contrastive elements,

and delineating phrase and sentence boundaries. This function of prosody, often called

linguistic, helps listeners interpret syntax, identify stress patterns, and differentiate sen-

tence types (Baum & Dwivedi, 2003; Ross, Thompson, & Yenkosky, 1997). For example,

the sentence “She didn’t steal the money” can shift in meaning depending on which word

is stressed: “She didn’t steal the money” (implying someone else did) versus “She didn’t

steal the money” (suggesting she took something else). In tonal languages such as Man-

darin Chinese, pitch variation determines lexical meaning: the syllable ma can mean

“mother”, “hemp”, “horse”, or “to scold”, depending on the tone used (Howie, 1976). In

contrast, in non-tonal languages like English or French, intonation patterns provide crucial

grammatical cues—transforming “You’re coming” into a question by simply raising pitch

at the end (Ukaegbe et al., 2022). In this thesis, we will operationalize the processing of

speech prosody by looking specifically at one of its linguistic function, namely its ability

to convey questions using the final pitch rise (Banuazizi and Creswell (1999) and Fig. 3.6

in Chapter 3).

2.1.2.2 Affective Prosody

By providing several ways to pronounce the same words, prosody can also convey affec-

tive states, speaker intentions, and social attitudes (Ekman, Sorenson, & Friesen, 1969;

Kamiloğlu, Fischer, & Sauter, 2019). This function of prosody, often called emotional or

affective enables for instance the expression and recognition of joy, sadness, anger, irony,

or sarcasm, critical elements of everyday social communication. For example, the phrase

“I can’t believe you did that” may express astonishment, anger, or admiration depending

on the speaker’s tone. Happiness is typically marked by increased pitch, faster tempo,

and greater intensity, whereas sadness involves slower speech, reduced pitch, and lower

amplitude (Belyk & Brown, 2014a). Unlike linguistic prosody, which is language-specific

and governed by syntactic rules, emotional prosody is more biologically grounded and
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culturally universal, with shared acoustic markers across languages and societies (Sauter,

Eisner, Ekman, & Scott, 2010). Note that much of what is typically studied under the

name of “affective” prosody does not encompass emotions stricto sensu: for instance,

propositional attitude such as being critical, impressed or disapproving, or speaker be-

haviour such as being condescending, friendly or rude. Wichmann (2000) provides an

excellent classification of such functions and how they relate to affective prosody.

Importantly, while linguistic and emotional prosody are often studied as distinct acous-

tic, cognitive and neurological phenomena, they often manifest themselves in identical

physical features. For instance, rising pitch at the end of a sentence may have linguistic

function (e.g., marking it as a question), emotional function (e.g., signaling the speaker’s

surprise), or express other speaker attitudes (e.g., uncertainty about the truth value of

the sentence Goupil, Ponsot, Richardson, Reyes, and Aucouturier (2021a)), and perhaps

all three simultaneously. Depending on context or attentional focus, they may or may not

trigger certain cognitive processing, and there is much debate how discrete and indepen-

dent these two functions really are (Belyk & Brown, 2014b; Seddoh, 2002).

2.1.3 Cerebral lateralization of prosody

While early theories proposed a right hemisphere specialization for affective prosody and a

left dominance for propositional language (Ross, 1981), more recent work suggests a more

complex and overlapping functional organization. Some researchers, such as Blumstein

and Cooper (1974), argued that the RH processes all suprasegmental features, while

the LH manages segmental language elements. Others, like Lancker (1980) and Behrens

(1989), emphasized functional distinctions between the hemispheres, such as the RH’s

role in processing global sentence-level prosody, and the LH’s role in local syllable-level

structures.

Adding a temporal dimension to these anatomical and functional accounts, Schirmer

and Kotz (2006) proposed a three-stage model of emotional voice processing (Figure 2.2).

In this framework, emotional prosody is processed sequentially across time and neural

structures. The first stage, occurring before 100 ms, involves early sensory analysis in
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bilateral auditory cortices, where the LH exhibits higher temporal resolution and the RH

greater spectral sensitivity. In the second stage (around 200 ms), emotionally salient

acoustic cues—such as pitch and intensity—are integrated in the superior temporal gyrus

(STG) and superior temporal sulcus (STS), forming an ‘emotional gestalt’. This inte-

gration is thought to rely more heavily on RH structures, particularly for paralinguistic

information, aligning with the acoustic asymmetry hypothesis. The third stage (beginning

around 400 ms) recruits frontal regions, including the right inferior frontal gyrus (IFG)

and orbitofrontal cortex (OFC), for evaluative judgments, while the left IFG supports

semantic processing. This tripartite model highlights that prosodic processing is shaped

by both temporal dynamics and cognitive context.

This aligns with the acoustic asymmetry hypothesis, where the RH preferentially pro-

cesses slow, melodic contours (e.g., fundamental frequency, F0) and the LH is tuned to

rapid, temporal features (Lancker & Sidtis, 1992; Zatorre, Belin, & Penhune, 2002). Za-

torre, Evans, Meyer, and Gjedde (1992) showed RH prefrontal activation in response to

pitch changes, supporting the RH’s critical role in melodic analysis. In parallel, Gan-

dour et al. (2004) proposed that lateralization also depends on linguistic experience and

task demands, with corpus callosum-mediated interhemispheric transfer modulating LH

involvement for complex auditory analysis.

A meta-analysis (Belyk & Brown, 2014b) further revealed that the right posterior supe-

rior temporal gyrus (pSTG) plays a central role in both emotional and linguistic prosody,

although different prosodic functions may engage distinct neural networks. Temporal-lobe

regions show stronger lateralization than frontal evaluative areas, suggesting a localiza-

tionist rather than strictly hemispheric view. Finally, Sammler, Grosbras, Anwander,

Bestelmeyer, and Belin (2015) identified two prosody-processing pathways in the RH: a

dorsal stream for temporally-sensitive acoustic cues (“how”) and a ventral stream for in-

tegrating holistic prosodic patterns (“what”), paralleling the dual-stream model proposed

for language processing in the LH (Hickok & Poeppel, 2004).

Taken together, these findings suggest that prosodic perception relies on dynamic

and partially overlapping networks, with hemispheric specialization shaped by cue type,

temporal structure, and task demands.
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Fig. 2.2 The three-stage model of emotional voice processing, where the perception of prosody
is processed along a right-hemisphere temporo-frontal gradient ranging from the supe-
rior temporal silcus (STS), superior temporal gyrus (STG) to the inferior frontal gyrius
(IFG). Figure adapted from (Schirmer & Kotz, 2006)

2.2 Brain strokes: etiology, consequences and recovery

2.2.1 Etiology

Strokes, or cerebrovascular accidents, are the second leading cause of death and the pri-

mary cause of disability and loss of autonomy in France (Tuppin et al., 2016). In 2022 in

France, 122000 adults were hospitalized for a stroke, and 30000 of them died (Lecoffre et

al., 2017). While high blood pressure, obesity, physical inactivity and age are important

risk factor, more than one in four stroke patients were aged < 65 years (Gabet et al.,

2024).

Stroke results from a sudden disruption of cerebral blood flow, leading to insufficient

oxygen and glucose delivery to brain tissue. Given the brain’s high metabolic demand,

this disruption can cause irreversible neuronal damage, known as infarction. Strokes are

broadly classified into two main types. Ischemic strokes, which account for approximately

85% of cases, result from a reduction in blood flow to a specific region of the brain, typically

due to the blockage of a cerebral artery. Hemorrhagic strokes, representing the remaining

15%, occur when a weakened blood vessel ruptures, often as a consequence of chronic

hypertension or vascular abnormalities, leading to bleeding within or around the brain

(Johns, 2014). In both types of stroke the brain tissue normally supplied by the vessel

is suddenly deprived of blood and its function is lost, causing rapid-onset neurological
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deficits (e.g., sudden weakness or loss of speech) (Kemmerer, 2022). These pathologies

lead to structural, molecular, and functional alterations in brain tissue. The severity and

range of neurological deficits that follow depend largely on the size and location of the

brain lesion (Sperber, Gallucci, Mirman, Arnold, & Umarova, 2023).

2.2.2 Functional consequences

If a stroke damages critical brainstem regions essential for basic life functions, the individ-

ual may lose consciousness and die within minutes (Yuan et al., 2018). However, when the

affected area is limited to cortical or white matter tracts responsible for specific cognitive

abilities, the person typically survives but may experiences deficits in those functions. For

instance, strokes involving the middle cerebral artery, which supplies essential language

areas, typically result in aphasia (Kemmerer, 2022).

More generally, and depending on its severity and location, surviving a brain stroke is

associated with a range of physical, cognitive/communication and emotional disabilities.

2.2.2.1 Motor impairments

Motor impairments, such as muscle weakness or hemiplegia, are common and can severely

affect mobility and autonomy. Some patients may also display repetitive or rhythmic

motor behaviors, leading to perseverative patterns of varying complexity (Li & Malhotra,

2015).

2.2.2.2 Cognitive impairments

Cognitive impairment affects nearly two-thirds of stroke survivors (Jin, Di Legge, Ostbye,

Feightner, & Hachinski, 2006) and is particularly pronounced in attention, executive func-

tion, and processing speed—domains (Feigin et al., 2010) that are highly interdependent.

A deficit in one, such as attentional control, can disrupt others. These challenges are

notably evident in individuals with right hemisphere damage (RHD) with 65% impact

(Stockbridge et al., 2022), who often present with executive dysfunction, sustained and

selective attention deficits, unilateral neglect, and working memory impairments (McNab
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& Klingberg, 2008). Approximately 96% of adults with RHD undergoing rehabilitation

show deficits in at least one cognitive-communication domain (Blake et al., 2002; Tomp-

kins, 2012), with such impairments having a marked impact on functional recovery and

quality of life.

Memory impairments (Maeshima & Osawa, 2021), including working memory and

recall deficits, are commonly observed in stroke patients and often co-occur with other

cognitive-communication challenges. LHD patients may be primarily impaired in verbal

memory (Blake et al., 2002). Conversely, (Gillespie, Bowen, & Foster, 2006) reveal that

RHD patients show deficits in both verbal and non-verbal memory when compared to

non-stroke controls, particularly on recognition tasks, which suggests difficulties in early

encoding or storage of information.

Post-stroke attention deficits are highly prevalent, affecting up to 92% of individuals

in the acute phase, and are associated with poorer motor recovery, increased fall risk, and

reduced independence in daily activities (Barker-Collo, Feigin, Lawes, Senior, & Parag,

2010; Hyndman & Ashburn, 2003; Hyndman, Pickering, & Ashburn, 2008). Attention

itself is a multifaceted construct comprising several interrelated subtypes. Focused at-

tention allows individuals to respond to discrete stimuli, while sustained attention (or

vigilance) enables prolonged engagement over time. Selective attention supports filtering

out irrelevant input, and alternating attention enables cognitive flexibility by shifting be-

tween tasks or mental sets. Finally, divided attention, the most demanding form, involves

managing multiple sources of information simultaneously (Cramer, Richards, Bernhardt,

& Duncan, 2023). After a stroke, sustained and selective attention are particularly im-

pacted, with 37% to 44% of patients showing impairments (Hyndman et al., 2008). These

deficits appear to be especially common after right-hemisphere lesions, making it essen-

tial for researchers to ensure that RHD participants can meet the attentional demands of

production and comprehension tasks (Heilman & Abell, 1980; Spaccavento et al., 2019).

Also related to attention and executive dysfunction, the symptom of perseveration

is a frequent symptom following right-hemisphere stroke, especially in patients with co-

occurring spatial neglect (Gandola et al., 2013; Nys, Zandvoort, Worp, Kappelle, & Haan,

2006). It manifests as inappropriate repetition of behavior or motor responses and can
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significantly affect communication and daily functioning. Perseveration encompasses two

primary types, recurrent markings (RM) and continuous markings (CM) (Sandson &

Albert, 1984). RM perseveration reflects the delayed reactivation of a prior response,

seen as multiple distinct strokes on the same target. CM perseveration refers to continued

movement after task completion, appearing as excessive, uninterrupted strokes on a single

item. Recent studies show that RM, but not CM, correlates with spatial neglect severity,

suggesting RM may reflect difficulties in spatial disengagement, while CM involves failures

in motor inhibition (Caulfield, Chen, Barry, & Barrett, 2017). Several established tasks

exist for quantifying perseveration, such as Object Alternation (OA) (Freedman, Black,

Ebert, & Binns, 1998) and the Wisconsin Card Sorting Test (WCST) (Abbruzzese, Ferri,

& Scarone, 1996), which are widely used in assessing cognitive rigidity in conditions

like aphasia and schizophrenia. These tasks measure executive function impairments,

including difficulty in adapting to rule changes and excessive response repetition. As will

be seen in Chapter 4, 8 and 9, perseveration will become a primary, albeit originally

unexpected, object of study in this thesis.

2.2.2.3 Communication disorders

Communication and language disorders are common after stroke and significantly impact

social participation and interpersonal relationships (Worrall et al., 2010).

Aphasia, primary associated with left-hemisphere strokes, affects language produc-

tion, comprehension, reading, and writing, and can have lasting effects on autonomy and

social interactions (Hamilton, Chrysikou, & Coslett, 2011). Aphasia is one of the most

frequent and severe language disorders after stroke, affecting approximately 30˘34% of

stroke patients in acute and rehabilitation settings, with frequencies as high as 62% in

acute ischemic stroke when patients arrive within 3 hours of onset (Flowers et al., 2016).

Over the long term, aphasia is associated with increased mortality, disability, and reduced

likelihood of returning home. It results in impairments across language comprehension,

production, and repetition, including difficulties retrieving words, forming grammatically

correct sentences, or understanding spoken and written language. The traditional neuro-

biological model of aphasia is the Wernicke-Lichtheim model, which originated in the late
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19th century as a method of synthesising neuropsychological findings of Broca, Wernike,

and others (Eling, 2011), and is now generally considered to be linguistically and anatom-

ically underspecified (Tremblay & Dick, 2016). This historical perspective is illustrated

in Figure 2.3, which contrasts Wernicke’s original diagram with Geschwind’s influential

20th-century update emphasizing the arcuate fasciculus and the angular gyrus. Modern

aphasiology research has revealed high variability within subtypes and limited correspon-

dence between lesion sites and language profiles, challenging the validity of rigid diagnostic

categories (Landrigan, Zhang, & Mirman, 2021). In particular, historically, the left hemi-

sphere has been considered dominant for language processing, especially in right-handed

individuals. However, accumulating evidence shows that the right hemisphere also plays

a role in language, particularly in supporting pragmatic, prosodic, and contextual aspects

of communication, and in aiding recovery after left hemisphere lesions (Bunker & Hillis,

2022).

Fig. 2.3 Language models from Wernicke to Geschwind Left: Wernicke’s original diagram
Right: Geschwind’s model, highlighting the arcuate fasciculus linking Broca’s and
Wernicke’s areas, adapted from (O’Sullivan et al., 2019)

While much stroke research has centered on the left hemisphere, there is a growing

acknowledgment of the communicative deficits that can arise from right hemisphere dam-

age. Unlike aphasia which often manifests itself overtly, the challenges faced by individuals

with right hemisphere damage are often less visible (Minga et al., 2023). These difficulties

may only become evident through close interactions or observations by family members,

who notice changes in their loved one’s ability to engage in meaningful spoken discourse,
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a monotone discourse and reduced participation in everyday communication.

Communication deficits associated with RHD include linguistic challenges such as

maintaining discourse coherence, selecting appropriate words, constructing syntactic struc-

tures, and managing conversational topics (Davis, O’Neil-Pirozzi, & Coon, 1997). Im-

pairments in the extralinguistic domain, such as difficulties in displaying appropriate

emotional facial expressions and body language, further hinder effective communication.

Paralinguistic deficits also play a significant role, with patients struggling to interpret and

use non-literal language like idioms, metaphors, and sarcasm (Heath & Blonder, 2005).

They may also have difficulty asking or understanding questions, exhibit tangential or

egocentric discourse, and display verbosity or a paucity of speech.

Most notable among right-hemisphere communication deficits, and the key object of

study in the present thesis, is the symptom of aprosodia, the inability to use or interprete

speech prosody (Stockbridge et al., 2022; Ukaegbe et al., 2022). Aprosodia is estimated

to affect 50%–78% of individuals with right hemisphere damage (Benton & Bryan, 1996;

Cancelliere & Kertesz, 1990; Côté et al., 2007; Ukaegbe et al., 2022). It has been classified

by Ross et al. (1997) into subtypes paralleling aphasia (e.g., motor, sensory, global as

showed in Figure 2.4). Expressive aprosodia is often linked to right anterior lesions, while

receptive forms are associated with right posterior damage. However, as for aphasia,

these clinical categories often fail to reflect real-world complexity, leading researchers to

adopt cognitive-neurofunctional models that emphasize hierarchical auditory processing

and distributed neural networks (Baum & Pell, 1999). As seen in section 2.3 below, the

clinical assessment of aprosodia is a bit of a weak-point in post-stroke rehabilitation, with

several existing tools that are plagued by important methodological limitations.

Somehow related to aprosodia, stroke survivors also have been described to suffer from

acquired amusia, of the inability to perceive and enjoy music. Music perception share over-

lapping neural mechanisms with prosodic processing, especially in the right hemisphere.

Both amusia and aprosodia have been associated with damage to the right frontoinsular

cortex, striatal regions, and disconnection of the right inferior fronto-occipital fasciculus

(Hausen, Torppa, Salmela, Vainio, & Särkämö, 2013; Sihvonen et al., 2021). These ar-

eas are part of the right ventral auditory stream, which integrates melodic and rhythmic
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Fig. 2.4 Right hemisphere lesion sites associated with different subtypes of aprosodia adapted
from (Ross, 1981)

information essential for interpreting both music and speech prosody. This overlap sup-

ports the view that pitch perception acts as a common foundation for both domains. The

Montreal Battery of Evaluation of Amusia (MBEA) (Peretz, Champod, & Hyde, 2003),

which includes subtests like contour and interval discrimination, is widely used to assess

amusia and can offer indirect insights into prosodic impairments as well.

2.2.2.4 Psychiatric and emotional disorders

Finally, neuropsychiatric disorders, particularly post-stroke depression (PSD), are frequent

after stroke and have a profound impact on quality of life (Oliveira et al., 2015). A pilot

study reported that 22.5% of stroke patients developed PSD within the first three months

following a stroke. The basal ganglia, which modulate both mood and speech motor con-

trol via dopaminergic pathways, may explain the frequent co-occurrence of mood disorders

and aprosodia, especially in expressive and receptive deficits seen in post-stroke depression

(Uekermann, Abdel-Hamid, Lehmkämper, Vollmoeller, & Daum, 2008). Acoustic analysis

of the voice of stroke survivors with post-stroke depression revealed reduced variability
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in fundamental frequency along with significant alterations in voice breaks and shimmer,

both of which were strong predictors of PSD risk. Early changes in affective prosody

have been closely linked to an increased likelihood of developing PSD within the first

period after stroke (Villain et al., 2016). These mood symptoms are often evaluated using

the Hospital Anxiety and Depression Scale (HADS), for detecting symptoms of anxiety

and depression (S. Friedman, Samuelian, Lancrenon, Even, & Chiarelli, 2001). Finally,

on top of all previous symptoms, stroke survivors may also experience anosognosia, a

meta-cognitive condition in which individuals are unaware of their own sensory, motor,

or cognitive deficits (Vuilleumier, 2004).

2.2.3 Recovery after stroke

Rehabilitation after a stroke aims to address the cognitive, motor, and emotional con-

sequences of the injury, and is most effective when delivered through multidisciplinary

and multidomain programs tailored to the individual’s deficits and recovery stage, with

the goal of restoring autonomy and improving quality of life (Benedetti et al., 2022;

Langhorne, Bernhardt, & Kwakkel, 2011; Licht, 1975).

Physiotherapy and targeted exercises are often employed to restore motor function

(Ernst, 1990). Speech and language therapy plays a central role in managing cognitive

and communication disorders. It targets impairments in receptive and expressive language

(understanding and producing spoken language), as well as reading, writing, and func-

tional communication (everyday use of language in context) (Brady, Godwin, Enderby,

Kelly, & Campbell, 2016). Finally, cognitive and behavioral therapy (CBT) is often used

to support recovery from post-stroke depression, anxiety, and fatigue, which may co-occur

with cognitive symptoms (Cumming, Packer, Kramer, & English, 2016).

In addition to traditional therapies, neuromodulation techniques such as transcranial

magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) have

shown promise in enhancing recovery and are now recommended in chronic-phase stroke

rehabilitation by the French health authority (HAS) (Saway et al., 2024).
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2.3 The clinical assessment of aprosodia: aim of the thesis

This thesis focuses on the specific post-stroke symptom of aprosodia, and how to improve

its clinical assessment by introducing a new experimental procedure based on the reverse-

correlation paradigm.

Because of their low visibility compared to the more manifest disorders of aphasia, com-

prehensive diagnostic tools are crucial for detecting and managing aprosodia effectively.

Speech-language pathologists are trained to assess and treat cognitive-communication dis-

orders, however patients are often not referred due to the subtle and easily overlooked

nature of these deficits in clinical settings (Blake et al., 2002).

2.3.1 Existing tools for the assessment of aprosodia

Several batteries exist to evaluate prosodic deficits, though they remain limited in avail-

ability, especially across languages (Benedetti et al., 2022). Key tools include the Aproso-

dia Battery (Ross et al., 1997), the Battery of Emotional Expression and Comprehension-

BEEC- (Cancelliere & Kertesz, 1990), the New York Emotion Battery-NYEB- (Borod,

Welkowitz, & Obler, 1992), the Montreal Evaluation of Communication-MEC- (Joanette

et al., 2004), the Assessment Battery for Communication-ABaCo- (Angeleri et al., 2008),

the Affective Communication Test-ACT- (H. S. Friedman et al., 1980), the Florida Af-

fect Battery-FAB- (Bowers, Blonder, & Heilman, 1998), and the Lille Communication

Test-LCT- (Rousseaux, Daveluy, & Kozlowski, 2010).

Most of these assessment tools rely on neuropsychological tasks (e.g., “paper-and-

pencil” measures) to evaluate prosodic abilities. However, these tools suffer from several

methodological limitations. Manual scoring introduces inter-rater variability, and many

assessments lack the sensitivity and reproducibility required to track longitudinal changes

or therapy effectiveness reliably (Benedetti et al., 2022).

Second, most batteries primarily assess emotional prosody, while linguistic prosody

remains underrepresented, appearing only as subtests in FAB, MEC, ABaCo, NYEB, and

LCT. A few tools (e.g., BEEC, FAB, ACT, NYEB) also evaluate facial emotion perception

and expression. Expressive prosody tasks often rely on subjective clinician ratings of
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facial expression or vocal tone, while receptive prosody assessments are challenging due

to the complexity of decoding emotional intent. Notably, only three tools, the BEEC,

Aprosodia Battery, and NYEB, specifically emphasize receptive prosody (Benedetti et

al., 2022). Finally, most of these tools are published in English; only a few are available

Fig. 2.5 Examples of two prosody-related subtests from the Montreal Evaluation of Commu-
nication (MEC) protocol. Top: Comprehension task assessing the patient’s ability to
interpret prosodic cues in spoken sentences. Bottom: Repetition task requiring patients
to reproduce the prosody of a model sentence. In this case, both tasks were scored
at 12/12, indicating full performance. However, these tasks primarily test recognition
and imitation, with limited assessment of spontaneous or internally generated prosodic
contours.
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in French (e.g., MEC, LCT) or other languages such as Italian (ABaCo), limiting their

international applicability.

The Montreal Evaluation of Communication (MEC) protocol (Joanette et al., 2004)

is currently the reference tool for evaluating communication deficits in French-speaking

adults following right hemisphere stroke. While it includes both listening and produc-

tion tasks, such as repetition and comprehension subtests (Figure 2.5), its prosody sec-

tion presents notable shortcomings. Specifically, it evaluates repetition of pre-recorded

prosodic contours but fails to assess the patient’s ability to perceive or generate prosody

independently of acoustic targets. As a result, it often produces false negatives and lacks

diagnostic precision for prosodic deficits (Rosenbek et al., 2004). Furthermore, inter-rater

agreement, although generally good across the MEC, is lower for prosodic components

(Côté et al., 2007).

Several alternative tools exist, such as the Battery of Emotional Expression and Com-

prehension (BEEC; Cancelliere & Kertesz, 1990) and the Aprosodia Battery (Ross et

al., 1997), but these focus exclusively on emotional prosody. The Florida Affect Battery

(Bowers et al., 1998) includes a linguistic prosody section but has not been validated in

French, limiting its clinical applicability in francophone contexts.

Additionally, most available tools provide only categorical outputs (presence/absence

of impairment), offering limited insight into the underlying cognitive or perceptual mech-

anisms. This lack of granularity hinders the development of targeted rehabilitation strate-

gies and limits their use in research contexts where mechanistic understanding is crucial.

2.3.2 Aim of the thesis

This thesis aims to develop a more sensitive method for evaluating prosodic perception

deficits, with a particular focus on the linguistic aspects of prosody, which have been

comparatively underexplored in the context of right hemisphere stroke. Existing tools

often lack the precision and adaptability required to capture subtle impairments in this

domain, particularly in clinical settings.

To address these limitations, we propose a novel experimental procedure that avoids
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traditional repetition or imitation tasks and instead focuses on patients’ spontaneous

perceptual judgments. Our approach is based on probing participants’ internal perceptual

representations, using the psychophysical methodology of reverse correlation (see Chapter

3, allowing for a more ecological and cognitively efficient assessment that aligns more

closely with real-world communication demands.

Importantly, this approach is not intended to replace existing clinical batteries but

to complement them by offering mechanistic insights into the underlying sensory and

cognitive processes of prosodic perception. By combining this novel perspective with

traditional tools, clinicians and researchers may gain a more comprehensive understanding

of individual deficits.

Ultimately, this work addresses a key gap in current assessment practices and strives

to contribute a robust framework for identifying and characterizing prosodic deficits in

neurological populations.
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Methodological foundations: The

reverse-correlation method

3.1 Psychophysics, signal-detection theory and the

computational modeling of sensory decisions

3.1.1 Fechner, Weber and Stevens: a very short history of

psychophysics

The mind and body, though different in nature, are not separate entities but can in theory

be linked by mathematical relations. This - a form of dual-aspect monism (Crane &

Patterson, 2012)- was the belief of 19th-century German physicist/psychologist Gustave

Fechner, who sought to uncover the relationship between the physical nature of sensory

neurons and the mental processes that give rise to thought, emotions or consciousness.

Fechner strongly believed in the power of empirical evidence, and his ambition was to find

a way to measure the mind. In 1860, he laid the foundation for the field psychophysics
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(Fechner, 1948), a science dedicated to understanding the relationship between physical

stimuli and mental phenomena. Psychophysics not only investigates how our sensory

organs operate but also explores how the mind interprets sensory information.

Quantitative measurements started very early in the 1830s with Fechner conducting

detection tasks for the presence or absence of a stimulus using the concept of the abso-

lute threshold, which defined the minimum intensity of a stimulus detectable 50% of the

time based on the decision criterion of one (Fechner, 1948). This was complemented by

Ernest Weber’s introduction of discrimination tasks, particularly the difference threshold

and the just-noticeable difference (JND). These tasks, often conducted using formats as

two-alternative forced choice (2AFC, i.e., one presented stimulus and two response op-

tions: participant has to choose whether the stimulus contains the target stimulus) or

two-interval forced choice (2IFC, i.e., two stimuli presented sequentially, requiring the

participant to identify the one containing the target), quantified the smallest detectable

change in a stimulus to find the participant’s detection threshold.

One of the first proposed principles of psychophysics is Weber’s Law, which established

that the JND (∆I) is proportional (k) to the stimulus intensity (I) (Falmagne, 1985).

∆I

I
= k (3.1)

In 1860, Fechner extended this work with Fechner’s Law (Johnson, Hsiao, & Yoshioka,

2002), proposing that perceived intensity (S) scales logarithmically with physical stimulus

intensity (I), linking perception to cumulative JNDs.

S = k log(I) + C (3.2)

The results of such experiments are often visualized using a psychometric curve, which

plots the probability of a participant’s response (e.g., detection or discrimination) against

the physical intensity of the stimulus. This curve, typically S-shaped, allows researchers

to estimate thresholds (e.g., the absolute threshold or JND) and analyze how sensitivity

changes with stimulus intensity.

Later, in 1957, Stevens’ Power Law (Stevens, 1957) generalized Fechner’s logarithmic

model, showing that perception could follow linear, logarithmic, or exponential relation-
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ships depending on the sensory modality. Stevens employed scaling tasks where partici-

pants estimated perceived intensities using rating scales or proportional judgements.

S = kIn (3.3)

These milestones, integrating detection, discrimination, and scaling tasks, formed the

foundation of modern psychophysics, advancing our understanding of sensory thresholds,

perceptual scaling, and the intricate relationship between physical stimuli and subjective

experience.

3.1.2 Signal detection theory

The development of Signal-detection theory (SDT) in 1966 by Green and Swets (1966)

marked a significant advance in psychophysics. SDT addressed limitations in earlier

methods, which could not effectively estimate false positives (false alarms) or distinguish

them from true detections. Traditional threshold-based approaches indeed assumed that

detection was solely based on sensory sensitivity and failed to account for decision-making

factors.

Unlike traditional threshold-based approaches, SDT introduced a probabilistic frame-

work, emphasizing that detection depends on both the actual sensory signal and the sub-

ject’s decision-making process. Key tools, like Receiver Operating Characteristic (ROC)

curves (Hanley et al., 1989), allowed researchers to analyze the trade-off between hit rates

(z(H), where z is the so-called z-transform, i.e., the inverse of the standard normal cumu-

lative distribution) and false alarms (z(FA)), separating perceptual sensitivity (d-prime,

or d′) and response bias β.

d′ = z(H) − z(FA) (3.4)

β = −z(H) + z(FA)
2 (3.5)

3.1.3 The linear observer model

Signal Detection Theory (SDT) is based on how we detect a signal from various sensory

stimuli amidst noise (signal + noise), and is concerned with the correct measurement
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of sensory performance and separating it from stimulus-independent decision-making pa-

rameters such as response bias. However, SDT does not provide a computational model of

observer decisions, i.e., does not describe what exact stimulus features are used to make a

sensory decision and how these features are weighted by the observer’s sensory/perceptive

system. Developing such observer models has been a major concern of the modern field

of psychophysics (Lu & Dosher, 2008).

One simple but prominent observer model in psychophysics in the linear observer

model (Abbey, Eckstein, & Bochud, 1999; Burgess, Wagner, Jennings, & Barlow, 1981). In

this model, an observer is assumed to have internal templates (arguably, ‘mental/sensory

representations’) representing the signals being presented and to make decisions by com-

puting the similarity of the stimulus (input) to these templates. In other words, the ob-

server’s responses are a weighted linear combination of the stimulus features with added

noise representing internal variability as we’ll see below.

In more details, consider a 2IFC signal-in-noise detection experiment where two ran-

domized signals st
1 and st

2 are presented in each trial t, and an observer is tasked to

identify which of s1,s2 best matches an internal template k (alternatively called a kernel,

see Section 3.2.1). A minimal model for how such an observer may come to a decision

is to compute decision variables dt
1 and dt

2 by taking the dot product of the stimuli with

the kernel s · k, and adding realizations from an independent source of ‘internal noise’ n

(called ‘internal’ in contrast to ‘external noise’, which is the noise applied experimentally

to the stimuli s1 and s2):

dt
1 = st

1 · k + nt
1 (3.6)

dt
2 = st

2 · k + nt
2 (3.7)

The model assumes that the observer identifies the signal as s2 if d2 plus some constant

b (response bias) is larger than d1:

(st
2 − st

1) · k + (nt
2 − nt

1) > b (3.8)
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or, equivalently,

rt =


2 if (st

2 − st
1) · k + nt > b

1 otherwise
(3.9)

where there n is a source of internal noise with a variance σn that is twice the variance

of n1 and n2.

Figure 3.1 provides an illustration of how the linear observer model can be used to

generate/simulate observer responses: an observer with a given kernel (top) responds

to 150 successive 2IFC trials (middle). For each trial, two stimuli are compared to the

kernel, and the stimulus that best matches it (with additive internal noise) is chosen as

the response.

Operating under the assumption of such a model, the task of psychophysical research

therefore consists of obtaining estimates for observer parameters (template k and internal

noise σn) given experimental measurements as well as evaluate the extent to which such

a model fits actual observations and, if needed, explore more complex alternative models

(for a review of alternative classical formulations of observer models, see (Lu & Dosher,

2008)). One common experimental approach to estimate these parameters is the so-called

reverse correlation procedure.
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Palin Toolbox: Simulating linear observers

In this chapter and the following, we will illustrate and analyse reverse-correlation

data using the methodology of computer simulation and a specially developed

Python toolbox (PALIN) which we developped for this purpose. PALIN introduces

an object-oriented architecture for defining simulated observers (with their tem-

plate, noise and bias parameters) and letting them encounter simulated experiments

with random trials. The following code illustrates how Figure 3.1 was generated: we

create a LinearObserver obs with a kernel, internal noise and bias; we then let the

observer respond to a simulated 2IFC experiment (here, a DoublePassExperiment,

see Section 3.2.3.1 below). This generates a list of responses (e.g., 0,1,0,0,0,1,1), cor-

responding to stimulus choice for each trial. An illustrative output of the simulation

is given in Figure 3.1.

# Define a DoublePassExperiment with 100 trials + 50 repeated trials

exp = DoublePassExperiment(n_trials = 100, n_repeated = 50,

trial_type = Int2Trial,

n_features = 6,

external_noise_std = 100)

# Create an Observer with a random kernel and internal noise

obs = LinearObserver.with_random_kernel(n_features = exp.n_features,

internal_noise_std = 3,

criteria = 0)

# Generate responses

responses = obs.respond_to_experiment(exp)

# Convert experiment and responses to a DataFrame for analysis

responses_df = Analyser.to_df(exp, responses)
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Fig. 3.1 Simulation of a Reverse-correlation experiment with Double-pass blocks Top: The
PALIN toolbox can simulate reverse-correlation experiments with various stimulus pre-
sentations, such as 1AFC and 2AFC tasks. A linear observer with a random kernel is
used to generate responses to the stimuli. Middle: Illustration of responses of a linear
observer with its defined kernel to the simulated experiment. These simulations can
include repeated blocks of trials (double-pass) to assess response consistency. In this
example, trials 0–50 (first block) are repeated in trials 100–150 (third block). Bottom:
Illustration of stimulus generation in a 2AFC reverse-correlation experiment. Trials 50
and 150 share identical stimuli, although the simulated observer responds differently
(response = 0 at trial 50, response = 1 at trial 150). In contrast, a different stimulus at
trial 51 yields the same response as trial 150, suggesting inconsistency in the observer’s
responses.
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3.2 Reverse correlation

Reverse correlation is an experimental approach that aims to estimate an observer’s de-

cision parameters in a data-driven manner. When operating under the assumption of

the linear observer model, reverse correlation provides both an experimental procedure,

as well as analytical methods, to estimate both kernel k, internal noise σn and bias b

from a series of stimulus-response pairs (st
1, st

2;rt) corresponding to how a given observer

responded to a given experiment.

3.2.1 The white-noise method, and Wiener/Volterra kernel theory

The idea of reverse correlation actually comes from the field of neurophysiology (Ringach

& Shapley, 2004). Originally called the white-noise method, it was used to measure the

receptive fields of visual neurons by analyzing their responses to random inputs, such

as white noise. This approach has provided critical insights into spatial and color pro-

cessing in the cortex at low-level processing in early sensory areas as V1 (Marmarelis &

Marmarelis, 2011). In its neurophysiological origins, random stimuli are presented to a

sensory neuron, and sparsely occurring neuronal spikes are measured in output ??. By av-

eraging the (random) stimuli that generated a response, the spike-triggered average (STA)

is obtained, representing the weights of a linear filter that approximates the neuron’s re-

sponse and reflects its preferred stimulus under the assumption of linearity - essentially,

as we’ll see below, a template k in the sense of the linear observer model.
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Fig. 3.2 Reverse correlation in the early visual system This diagram illustrates how a neuron’s
stimulus–response properties can be characterized using system identification tech-
niques. A random white noise current is injected at the receptor level of the retina
(top right), and the resulting spike activity is recorded from the optic nerve (top left).
The measured spike rate reflects the output of the neuron in response to the dynamic
input. By computing the cross-correlation between the stimulus and the neural re-
sponse, we estimate the system’s linear temporal filter, also called the impulse response
or kernel (bottom left). This kernel captures how the input is temporally integrated
to generate the output. Once this kernel is estimated, it can be used to predict the
system’s response to new stimuli through convolution (bottom right). This approach,
often referred to as the reverse correlation method.
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An alternative mathematical view of the white-noise method is the Wiener/Volterra

theory of system identification (Eggermont, 1993). Volterra (1930) and Wiener (1966)

demonstrated that under certain conditions (e.g., time invariance and finite memory),

complex systems with time-varying inputs x(t) and outputs y(t) can be approximated

as a sum of simpler subsystems. These include a zero-order subsystem, which produces

a constant output; a first-order subsystem, which generates a weighted sum of past in-

puts using what is called a first-order kernel; a second-order subsystem, which captures

pairwise interactions of past inputs through the second-order kernel, and so forth. Lee

and Schetzen (1965) showed that white noise input, having a flat power spectral density,

enables the direct evaluation of kernels by correlating input and output. For instance,

the zero-order kernel corresponds to the average output, the first-order kernel is derived

from the correlation between input and output, and the second-order kernel involves cor-

relations between pairs of inputs and the residual output. Here again, the rational is that

one can estimate a first-order linear approximation of a system - e.g., an experimental

observer - by presenting them with random stimulus variations and analyzing the set

of their responses. This provides a way to estimate a linear-observer template k as the

first-order Volterra/wiener kernel of the corresponding stimulus-response system. In the

psychophysical literature as well as the rest of this thesis, the word kernel is actually

alternatively used to describe an observer’s template - hence, also the use of letter k in

our formulation.

3.2.2 Estimating templates

Building on the white noise approach in neurophysiology, psychophysicists have proposed

to estimate linear-observer templates/kernels by presenting them a large number of ran-

domly manipulated stimuli, and by “reverse” correlating observer responses on stimulus

characteristics. In a typical experiment, the stimulus consists of one of two possible sig-

nals embedded in a Gaussian noise field that varies from trial to trial. The observer’s

task is to identify which signal was shown on each trial, i.e., to provide a single discrete

response (rather than a continuous variable output over time, as in neurophysiology).
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3.2.2.1 The classification-image method

A simple method to estimate templates in such a setup is the so-called classification im-

age method1 - essentially a weighted sum. The process involves averaging the noise from

trials with positive responses, and subtracting the average noise from trials with negative

responses 3.10. In the case of graded responses (i.e., stimulus intensity instead of stim-

ulus detection), the observer’s response on trial t is modeled as a linear combination of

the stimulus features, weighted by sensory weights. The weighted sum is replaced by a

least-squares regression to relate observers’ rating responses to the stimulus properties.

The resulting regression coefficients can be interpreted as the sensory weights that ob-

servers assigned to different properties (e.g., frequency bins in a spectrogram stimulus -

A. Ahumada and Lovell (1971)) when judging the presence of the signal.

r̂t =
d∑

i=1
st

i · ki + ϵt (3.10)

3.2.2.2 The Generalized Linear Model method

An equivalent view of Eq. 3.9 is to consider responses rt as the binary outcome of a

logistic regression (or, equivalently, a Generalized linear model - GLM), given by:

yt = g(β0 +
N∑

i=1
βix

t
i) (3.11)

where the weights βi=1...N of the linear predictor correspond to the coordinates of kernel

k, and input xi correspond to stimulus data (in the 2AFC case of Eq. 3.9, xt
i is the ith

coordinate of stimulus difference st
1 − st

2), both of dimension N ; and g a non-linear link

function (logit or probit (Müller, 2011)).

Generalized Linear Models (GLMs) are a broad class of regression-like models that ex-

tend traditional linear regression to accommodate dependent variables with distributions
1The terminology in the field of reverse correlation suffers from some ambiguity. Some authors use

the word “classification image” to refer to the estimated template, with the rationale that it provides a
representation of how a (e.g., visual) classification is done, if such is the task presented to the observer
(by extension, templates extracted from auditory experiments are also called auditory classification image
(Varnet, Wang, Peter, Meunier, & Hoen, 2015)). Other authors use the “classification image” method to
describe the averaging procedure by which the template is estimated (Murray, 2011). We use it here in
this sense and will refer to the template as template or kernel.
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beyond the normal, such as Bernoulli, binomial, or Poisson (McCullagh, 2019). The GLM

framework models the expected value of a dependent variable as a nonlinear function of

a linear combination of predictors through a link function, making it highly flexible and

adaptable to a variety of data types.

One of the key strengths of GLMs lies in their reliance on Maximum-Likelihood-

Estimation (MLE) for parameter fitting. This robust estimation technique determines

the regression coefficients (β) by maximizing the likelihood of the observed data under

the assumed model. The likelihood function is given by:

L(β | y,X) =
n∏

i=1
f(yi | µi), (3.12)

where β is the vector of regression coefficients (including the intercept β0), y = [y1,y2, . . . ,yn]

is the vector of observed responses, and X is the matrix of input features or covariates.

Each yi corresponds to the observed response on trial i, and µi is the expected value of

yi under the model, typically defined as µi = g−1(x⊤
i β), where g−1 is the inverse of the

link function (e.g., logistic or probit). The function f(yi | µi) denotes the likelihood of

observing yi given the model prediction µi, based on the assumed distribution of the GLM

(e.g., Bernoulli for binary data). The product is taken over all n trials in the dataset.

The maximum likelihood estimates of β are obtained by solving:

β̂ = argmax
β

logL(β | y,X) (3.13)

It indicates that we search for the value of β that maximizes the log-likelihood of the

observed data y given the inputs X under the GLM model. Taking the logarithm of the

likelihood simplifies the product in Equation 3.12 into a sum, which is more convenient

for numerical optimization.

These estimates enable hypothesis testing and model comparison using statistical tools

such as the Akaike Information Criterion (AIC), (Knoblauch & Maloney, 2008) which

evaluates the relative quality of different models.

Knoblauch and Maloney (2008) explored the relationship between GLMs and visual

classification images, demonstrating through simulations that GLMs offer a principled and

robust framework for estimating observer templates. They found that GLMs are more
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resistant to noise compared to traditional weighted sum methods. Similarly, Mineault,

Barthelmé, and Pack (2009) extended these ideas to analyze complex decision-making

tasks by including non-linear relationship wih sparse priors, enhancing GLM utility for

sparse data and showing that GLMs can infer a psychophysical observer’s decision process

with fewer trials than previously proposed methods. This enables researchers to explore

more sophisticated and informative models of decision-making processes (Okazawa, Sha,

Purcell, & Kiani, 2018) while maintaining statistical tractability.

Palin Toolbox: Kernel estimation with classification images and GLM

PALIN can implement both the weighted sum (ClassificationImage) method and

the GLM method for kernel estimation. The following code configures and runs

a simulation for comparing the accuracy of both methods for experiments with

150, 500, and 1000 trials. It defines parameters for observers, experiments, and

analyzers, and performs the simulation over all possible configurations. Stimuli are

6-dimensional, randomly sampled by a normal distribution with standard deviation

of 100. Simulated responses are analysed to look at the error of estimation between

2 methods of kernel extraction and the true (known) observer kernel.

# Simulate multiple linear observer to look at the Correlation and confidence interval of estimation

observer_params = {'kernel':['random'],'internal_noise_std':np.arange(0,5.1,0.5), 'criteria':[0]}

experiment_params = {'n_trials': [150,500,1000], 'trial_type': [Int2Trial],

'n_features': [6],'external_noise_std': [100]}

analyser_params = {'kernel_extractor': [ClassificationImage,GLMKernel],'distance': ['CORR']}

sim_kernel = Sim(SimpleExperiment, experiment_params, LinearObserver, observer_params,

KernelDistance, analyser_params)

sim_kernel_df = sim_kernel.run_all(n_runs=10)

The accuracy of kernel estimation using reverse correlation methods naturally depends

on the number of trials available. Figure 3.3 compares the performance of two common

approaches for kernel extraction: the weighted sum method or the classification image

and the Generalized Linear Model (GLM). The y-axis shows the correlation between the

estimated kernel and the true underlying kernel used to generate the data, while the x-axis

represents the number of trials.

As expected, both methods improve in accuracy with increasing trial numbers. How-
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ever, the GLM consistently outperforms the weighted sum method, particularly when the

number of trials is limited (e.g., below 500). This advantage likely stems from the fact

that the GLM explicitly models the probabilistic link between input and response, which

leads to more robust estimates in low-data regimes. When the number of trials reaches

1000, the difference between the methods narrows, but the GLM still shows slightly higher

correlation with the ground truth.

3.2.3 Estimating internal noise

Within the linear observer model, internal noise σn refers to the inherent variability (Neri,

2010) in the responses of the observer’s sensory and decision-making system. This vari-

ability arises from the stochastic nature of neural activity, which limits the reliability and

accuracy of perceptual systems. Interestingly, internal noise is not unique to biological

systems, signal degradation due to variability is a well documented phenomenon in elec-

tronic systems, such as amplifiers. However, in sensory neurons, internal noise plays a

critical role as a limiting factor in signal transduction, influencing both perception and

behavioral performance (Faisal, Selen, & Wolpert, 2008).

Internal noise, distinct from external variability, is a critical factor in signal detection.

When a signal is embedded in external noise (e.g., added Gaussian noise), an ideal ob-

server uses an internal template to match the signal. In the absence of internal noise, this

template closely aligns with the signal, enabling accurate detection. However, internal

noise necessitates adjustments, such as clipping or rescaling the template, to maintain

functionality. These adjustments illustrate how internal variability constrains the ob-

server’s ability to optimize detection, with higher internal noise limiting both the range

and accuracy of the template (Neri, 2020).

The internal-to-external noise ratio provides insight into the relative contributions of

sensory variability and environmental factors, indicating whether performance is more

influenced by internal processes or external conditions. Understanding this relationship

is critical for characterizing perceptual sensitivity and decision-making.
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Fig. 3.3 Comparison of kernel estimation methods and their sensitivity to the number of tri-
als.Top: Example of estimated kernels obtained with two methods of weighted sum
(classification image) and Generalized Linear Model (GLM), compared to the true
kernel used to simulate the responses. Bottom: Correlation between the estimated
and true kernel as a function of the number of trials. Shaded areas indicate variability
across simulations (confidence intervals). As the number of trials increases, both meth-
ods improve, but the GLM consistently provides more accurate estimates, especially
with fewer trials.
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3.2.3.1 The double-pass procedure

The double-pass experiment is an experimental paradigm designed to isolate and quantify

internal noise (A. J. Ahumada, 2002), distinguishing it from external noise or task-induced

variability. By presenting identical stimuli twice on separate trials and analyzing response

consistency, this method attributes any inconsistency to internal noise.

To avoid demand effects, the two presentations of identical stimuli are separated by

many intervening trials (Hasan, Joosten, & Neri, 2012). For instance, in a two-alternative

forced-choice (2AFC) task, the observer is presented with two stimuli (A and B) and

their responses across repeated trials are categorized into four possibilities: AA, AB,

BB, BA. These response types quantify decision consistency, with greater inconsistency

(e.g., frequent AB or BA responses) indicating higher internal noise (Murray, Bennett, &

Sekuler, 2002).

In practice, to estimate internal noise from double-pass data, we analyze two key

behavioral metrics:

• Percentage of Agreement (pagree): The proportion of trials where the participant

gives the same response in both passes.

• Probability of Choosing Interval 1 (pfirst): The proportion of trials where the partic-

ipant selects response category 1 across all trials (in a 2IFC experiment; alternatively

probability of choosing the first response option in 2AFC data).

From these empirical values, internal noise and decision bias are then estimated using

grid search simulations. This method involves generating artificial observers that mimic

human decision-making under different noise conditions. Each simulated observer follows

the linear observer model, where responses are influenced by:

• A fixed decision criterion (bias, b) that determines the threshold for choosing one

response over another.

• A level of internal noise σn that affects response variability.
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In the simulation, a range of artificial observers is created, each with varying levels

of internal noise and different response biases (favoring Interval 1 or 2). These simulated

observers undergo a large number of trials, producing predicted values of (Pa, Pint1) for

different noise and bias conditions. The next step involves comparing the participant’s

actual (Pa, Pint1) values against the simulated dataset. The algorithm identifies the

simulated observer whose (Pa, Pint1) values best align with the participant’s empirical

data. This is achieved by minimizing the difference between the observed and simulated

(Pa, Pint1) values. The internal noise (IN) and bias value that yield the closest match

are selected as the final estimated parameters for the participant.

Figure 3.4 illustrates typical lookup data computed using a simulated linear observers

with σn ∈ [0,5] and b ∈ [−5,5], expressed in units of external (stimulus) noise. Empirical

probabilities pagree and pfirst are computed over simulated double-pass experiments with

n = 104 repeated trials, and averaged over 10 realizations. For unbiased observers, σn

maps non-linearly but bijectively to pagree. However, symmetry of pagree for positive and

negative biases b illustrates the need to include pfirst to disambiguate the underlying values

of b and σn.

Palin Toolbox: Lookup simulation

Simulation of a lookup table using synthetic linear observers, systematically varying

internal noise σn ∈ [0,5] and decision criterion b ∈ [−5,5] to compute the impact on

agreement rate (pagree) and bias (pfirst). The resulting values are stored in a CSV

file for later estimation from empirical data.

DoublePass.build_model(agreement_model_file='model_df.csv',

internal_noise_range=np.arange(0,5,.2),

criteria_range=np.arange(-5,5,1),

n_repeated_trials=1000, n_runs=10)
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Fig. 3.4 Lookup data computed using simulated linear observers which show the influence of
internal noise σn ∈ [0,5] and decision criterion b ∈ [−5,5] on pagree and pfirst S(forward
model) Left: The simulated pagree is highest when internal noise is low and bias is large
(either positive or negative) and it is lowest when the bias is zero and internal noise is
high. The plot is symmetric around b = 0, which illustrates the need of using pfirst to
disambiguate the direction of bias. Right: The simulated pfirst increases monotonically
with bias and captures directional trends in responses independently of stimuli. Lower
internal noise and more positive bias are associated with a higher pfirst.
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Palin Toolbox: Internal Noise estimation

Creating 3 double-pass experiments (resp. with 150+150, 500+500, 1000+1000

trials), of the type 2AFC (Int2Trial), where stimuli are 6-dimensional, randomly

sampled with a standard deviation of 100.

The simulation will have every observer meet every experiment, and on each re-

sponse, run an InternalNoiseValue analyser. This Analyser takes 2 parameters: an

internal noise estimation method (here, DoublePass).

When the simulation is run (Simulation.run_all(n_runs)), the Simulation

will iterate over every configuration in observer_params, experiment_params,

analyser_params and have every possible observer meet every possible experiment.

# Extract internal noise using the DoublePass method for one linear observer

DoublePass.extract_single_internal_noise(responses_df,agreement_model_file='agreement_model_large.csv')

# Simulate multiple linear observer to look at the Confidence interval of estimation

observer_params = {'kernel':['random'],'internal_noise_std':np.arange(0,5.1,0.5), 'criteria':[0]}

experiment_params = {'n_trials': [150,500,1000], 'trial_type': [Int2Trial],

'n_features': [6],'external_noise_std': [100]}

analyser_params = {'internal_noise_extractor':[DoublePass],

'agreement_model_file':['agreement_model_large.csv']

sim_in = Sim(DoublePassExperiment, experiment_params, LinearObserver, observer_params,

InternalNoiseValue, analyser_params)

sim_in_df = sim_in.run_all(n_runs=10)
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Fig. 3.5 Effect of trial number on internal noise estimation accuracy. Top: Estimated internal
noise plotted against true internal noise values for three different trial counts (150,
500, and 1000). The diagonal line indicates perfect estimation. Accuracy improves
with more trials, and estimates become more closely aligned with the ground truth
up to approximately 3 standard deviations of internal noise. Beyond that point, the
estimation begins to systematically underestimate higher internal noise values, regard-
less of the number of trials.Bottom: Percentage error in internal noise estimation as a
function of the number of trials. The estimation error remains around 34% for trial
counts between 200 and 600, but then decreases steadily, reaching around 20% with
1000 trials. This trend confirms that increasing the number of trials enhances estima-
tion reliability and reduces variability.
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3.3 Exploring prosody perception with reverse correlation

methods

Reverse correlation methods, originally developed in sensory neuroscience, have recently

been adapted to study high-level auditory representations such as speech prosody.

In particular, Ponsot, Arias, and Aucouturier (2018) introduced a reverse-correlation

paradigm to access listeners’ mental representations of interrogative intonation. In their

experiment, five French speakers were presented with pairs of pitch-manipulated versions

of the word vraiment (“really”) and asked to decide which sounded more interrogative.

The pitch contours were perturbed by applying a form of “intonation white noise”, i.e.,

random pitch shifts sampled from Gaussian distributions, at six equally spaced time points

(71 ms) across the utterance (Figure 3.6, Panel A), using a dedicated python toolbox

(CLEESE, Burred, Ponsot, Goupil, Liuni, and Aucouturier (2018)). These manipulations

preserved the identity of the word while randomizing its prosodic profile.

Participants’ binary responses (1 if the utterance was judged as more interrogative,

0 otherwise) were then analysed with the classification-image method (Figure3.6, Panel

B) to extract a kernel reflecting which parts of the pitch contour influence perceptual

decisions.

The kernel (Figure 3.6, Panel C) showed a clear, consistent pitch rise toward the end

of the word (segment 6), revealing that listeners systematically associate rising intonation

in that region with interrogative intent. Importantly in Ponsot, Burred, et al. (2018), this

pattern was replicated across all five healthy participants, who exhibited highly similar

individual kernels, suggesting a shared internal representation of French interrogative

prosody.

This approach shows how reverse correlation can uncover perceptual strategies without

relying on explicit feature definitions, and also opens the opportunity to measure partic-

ipant internal noise using the same procedure (something Ponsot, Burred, et al. (2018)

didn’t do for interrogative prosody). In the current thesis, we adopt a similar method to

investigate prosodic processing (specifically, interrogative prosody) in stroke patients (see

Chapter 4).
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Fig. 3.6 Reverse correlation paradigm for interrogative prosody (adapted from (Ponsot, Arias,
& Aucouturier, 2018)) (A) The pitch contour of the word vraiment (“really”) is ran-
domized across six segments using Gaussian-distributed perturbations, generating a
variety of intonation patterns. On each trial, participants hear a pair of such manip-
ulated utterances and choose the one that sounds more interrogative. (B) A prosodic
kernel is computed by correlating responses with pitch contours across trials, effectively
revealing how pitch modulations influence decisions. (C) The resulting kernel shows a
consistent pitch rise at the end of the word, both at the group level (left) and across
individual participants (right), indicating a shared mental representation of interroga-
tive intonation in French.

3.4 Discussion

In Chapter2, we explored the biological basis of prosody perception, emphasizing its

critical role in communication and social interaction after stroke. We also discussed the

challenges posed by traditional assessment tools, which often fail to provide mechanistic

and specific insights into deficits like aprosodia. These limitations highlight the need for

approaches that move beyond descriptive measures to quantify prosody perception in a

systematic and theory-driven way.

In Chapter3, we took a step toward addressing these gaps by introducing possible

mechanistic model rooted in computational psychophysics. Specifically, we examined
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psychophysical experiments such as reverse correlation to probe how participants process

and represent prosodic cues. This framework allowed us to compute key variables:

• Internal representations, estimated using classification images, to map the auditory

features participants rely on for prosody judgments.

• Internal noise, quantified through double-pass experiments, to measure variability

in the perceptual and decision-making processes.

These methods provide insights into what model may interpret prosody perception

better by offering precise, computationally grounded metrics for understanding how indi-

viduals perceive and respond to prosodic stimuli.

Next chapter4 lays the groundwork for transitioning from theoretical exploration to

empirical application. By combining the mechanistic models from Chapter 2 with real-

world data, we aim to develop a framework that bridges theory, data, and computation.

Computational psychophysics provides a powerful lens through which to study prosody

perception, enabling us to:

• Apply models to actual data, testing their predictive power and robustness in quan-

tifying deficits.

• Explore individual differences in prosody perception, paving the way for personalized

assessment tools.
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Part II

A first encounter with clinical data:

preliminary results and problem

statement
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Reverse-correlation biomarkers of

aprosodia after a right-hemisphere stroke

As discussed in Chapter 2, survivors of right-hemisphere stroke may experience deficits in

prosody perception that persist from the acute to chronic phase. These impairments can

often remain subtle, apparent only in conversations with family members while going un-

detected during speech therapy sessions when assessed using standard batteries. Reverse

correlation, the approach sketched out in Chapter 3, appears to be a promising method

to uncover the psychophysical parameters of such deficits, when present.

In part II, we propose a first encounter with clinical data. In the present chapter,

we present an analysis of reverse correlation data, collected prior to the thesis (the work

of speech therapy students Mélissa Jeulin, Pauline Bardet, Pauline Commère, supervised

by Marie Villain and JJ Aucouturier), using the reverse correlation paradigm of Ponsot,

Burred, et al. (2018). Our goal is to implement reverse correlation analysis in this context,

extract linear-observer parameters and compare their diagnostic value to existing aproso-

dia scales commonly used in speech therapy. As we’ll see, this study will also give us the

opportunity to identify computational limitations with the classical kernel and internal
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noise extraction method that occur when analysing stroke patients (Chapter 5), which

the rest of the thesis (Part III) will set to address. Part IV will provide a re-analysis of

the same data, using our new proposed methods.

This study was published as:
Adl Zarrabi, A., Jeulin, M., Bardet, P., Commère, P., Naccache, L., Aucouturier,

J. J. & Villain, M. (2024). A simple psychophysical procedure separates represen-

tational and noise components in impairments of speech prosody perception after

right-hemisphere stroke. Scientific Reports, 14(1), 15194.
We present here a verbatim of the manuscript, preceded by a short summary of the

methods and main results.

4.1 Materials and methods

We adapted the paradigm of Ponsot, Burred, et al. (2018) to probe the sensory/cognitive

mechanisms that underlie the processing of interrogative prosody in stroke patients. To

do so, we recorded the utterance of the French word “vraiment” (“really”) and generated

prosodic variations by introducing random Gaussian noise to the base sound for each

stimulus. The utterance was segmented into six intervals of 71 ms, and the pitch at

each breakpoint was independently manipulated using a normal distribution, using the

CLEESE python toolbox (Burred et al., 2018). Participants were then asked to judge

between two random prosodic variations in each 2IFC trial, identifying which interval

contained the word that sounded most interrogative.

To extract participants’ linear-observer parameters (kernels k and internal noise σn),

we used the classical methods from the reverse-correlation literature. Kernels were ex-

tracted using the “classification-image”/weighted-sum method of averaging the noisy stim-

ulus from stimuli where participants provided negative responses and subtracting it from

the average noisy stimulus of stimuli with positive responses (Murray, 2011). This pro-

cess results in a weighted sum that reflects participants’ internal representation of the

interrogative form of “vraiment”.

Internal noise was estimated using the double-pass procedure (Burgess & Colborne,
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1988): the experiment consisted of 150 trials, separated into 3 blocks of 50 trials, and the

second and third blocks were exactly repeated trials. We estimated observer consistency

by calculating the percentage of agreement in their responses across identical trials and

estimated the standard deviation of the equivalent internal noise using a lookup table, as

detailed in Chapter 3.

Using this procedure, we compared data from right-hemisphere stroke patients (N=22)

and age-matched healthy controls (N=21) to establish a baseline for the normal prosody

perception of the interrogative form of “ vraiment?”, which we hypothesised from Ponsot,

Burred, et al. (2018) and others to include a pitch rise at the end of the utterance (Banuaz-

izi & Creswell, 1999). This comparison allows us to define a reference threshold for typical

performance and identify abnormalities in prosody processing. Additionally, we collected

patient responses to various standardized assessment batteries used in speech therapy ses-

sions, serving as pathological gold standards. These included the MEC Comprehension

and Repetition tests, Airtac2, LAMA, and MBEA, HADS (see below), which provided

clinical benchmarks for evaluating the “biomarker potential” of kernel and internal noise.

4.2 Results

Both kernel and internal noise extracted from the reverse-correlation procedure effectively

distinguished patients from controls.

Internal representations of interrogative prosody in the control group exhibited a typ-

ical final-rise contour, characterized by a marked pitch increase at the end of the second

syllable. In contrast, patients’ internal representations had lower amplitude, indicating

reduced discriminative power, and displayed greater variability across individuals .

Additionally, control participants demonstrated high response consistency across trials,

with internal noise values (M = 0.7, SD = 0.37) within the range typically observed for

lower-level auditory and visual tasks (Neri, 2010). Patient responses were associated with

significantly higher levels of internal noise (M = 2.54, SD = 1.90).

Statistical analyses confirmed significant differences between groups for both represen-

tation typicality - the similarity between an individual’s mental representation and the
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control group average - M = 0.27 [0.16;0.39], Mann–Whitney’s U(−0.82) = 420, p < 0.001

and internal noise M = −1.84 [−2.61;−1.07], U(0.59) = 95.00, p = 0.001.

Within the patient group, internal noise values and, to a lesser extent, representation

typicality were statistically associated with scores from the current gold standard for

assessing prosody perception deficits (MEC), demonstrating good concurrent validity.

Higher internal noise values correlated with lower (more severe) scores on the MEC prosody

comprehension scale (p = 0.043), while representation typicality showed a positive but

non-significant trend (p = 0.15). Notably, neither measure correlated with the MEC

prosody repetition score (p = 0.82 andp = 0.365, respectively), despite a significant positive

correlation between the two MEC scores. This highlights the symptom specificity of our

measures.

A well-known limitation of the MEC instrument is its poor sensitivity, as some pa-

tients scoring above the pathological cut-off (9/12) still report communication difficulties.

Our measures, however, successfully distinguished this group of MEC-negative (high-

functioning) patients from controls, both in terms of representation typicality (p = 0.001)

and internal noise (p = 0.026).

To further examine the convergent validity and specificity of internal representation

and internal noise measures, we explored their associations with other constructs relevant

to stroke rehabilitation. As expected, both measures correlated with non-prosody-related

difficulties in tone intensity and duration discrimination, as assessed by AIRTAC2 (p =

0.007 and p = 0.037, respectively). However, they were not associated with the ability to

detect rare auditory targets among distractors (LAMA, p = 0.25 and p = 0.23) or with

musical melody processing, as measured by MBEA (p = 0.46 and p = 0.98).

Regarding musical ability, MBEA was assessed in a subset of patients, the majority

of whom were found to have deficits in melody/pitch processing. Among patients clas-

sified with melody amusia, 75% exhibited internal representations that visually deviated

from controls, whereas 60% of non-amusic patients had normal representations. Finally,

internal noise, but not representation typicality, was significantly related to anxiety and

depression levels, as measured by HADS (p = 0.018 and p = 0.178, respectively).
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A simple psychophysical procedure 
separates representational 
and noise components 
in impairments of speech prosody 
perception after right‑hemisphere 
stroke
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After a right hemisphere stroke, more than half of the patients are impaired in their capacity to 
produce or comprehend speech prosody. Yet, and despite its social‑cognitive consequences for 
patients, aprosodia following stroke has received scant attention. In this report, we introduce a novel, 
simple psychophysical procedure which, by combining systematic digital manipulations of speech 
stimuli and reverse‑correlation analysis, allows estimating the internal sensory representations that 
subtend how individual patients perceive speech prosody, and the level of internal noise that govern 
behavioral variability in how patients apply these representations. Tested on a sample of N = 22 
right‑hemisphere stroke survivors and N = 21 age‑matched controls, the representation + noise model 
provides a promising alternative to the clinical gold standard for evaluating aprosodia (MEC): both 
parameters strongly associate with receptive, and not expressive, aprosodia measured by MEC within 
the patient group; they have better sensitivity than MEC for separating high‑functioning patients 
from controls; and have good specificity with respect to non‑prosody‑related impairments of auditory 
attention and processing. Taken together, individual differences in either internal representation, 
internal noise, or both, paint a potent portrait of the variety of sensory/cognitive mechanisms that can 
explain impairments of prosody processing after stroke.

Keywords Stroke, Prosody, Reverse-correlation, Internal noise, Perception

After a right hemisphere stroke, more than half of the patients present a communication disorder such as 
aprosodia, the impossibility to produce or comprehend speech prosody—or the “melody” of  speech1–5. Despite 
the social-cognitive implications for patients of not being able to process e.g. linguistic or emotional  prosody6, 
aprosodia following stroke has received scant attention.

First, the existing assessment tools for impairments of prosodic processing are found to be lacking in several 
aspects. The gold standard in the French language, the “Montréal Evaluation de la Communication” (MEC)7 con-
sists of a combination of listening and production tests which exhibit good inter-rater reliability but are suspected 
of limited sensitivity, failing to capture nuanced deficits in language processing in e.g. ecological  situations8. More 
generally, traditional pre-post assessments with listening batteries (ex. the 12-items of the MEC prosody task) 
suffer from test–retest effects, where participants might remember their responses, leading to learning effects. 
Additionally, assessments based on prosody production typically involve manual scoring by clinicians, which 
may generate issues of inter-rater variability and limits the potential for monitoring patients remotely. Finally, 
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existing tools typically provide a binary score indicating the presence or absence of a pathology, but do not allow 
for an in-depth understanding of the mechanisms that explain why a specific error may occur.

Besides lacking sensitive assessment tools, the field is also lacking in its understanding the exact sensory/
cognitive mechanisms that subtend  aprosodia4. On the one hand, a wealth of cognitive neuroscience research 
has linked linguistic and/or emotional prosody perception with a dominantly-right temporo-frontal  network9—
although it should be noted that recent research has also implicated a wider variety of cortical and subcortical 
 networks10. One prominent explanation for such a specialization proposes that the bilateral auditory cortices 
differ in their temporal and spectral resolution, with left auditory regions responding preferably to fast changes 
in the type of spectral cues implicated in phonetic discrimination, and right auditory regions to slow variations 
of pitch as seen in speech prosody and  music11. On the other hand, clinical patient data has also linked right 
hemisphere damage due to stroke with a wide multitude of cognitive-communication deficits, which not only 
include aprosodia, but also impairments of the interpersonal communication such as inappropriate pragmat-
ics and  humour1, as well as domain-general deficits in attention, memory and executive  function5. It therefore 
remains poorly understood whether impairments of prosody perception result from specific damage in regions 
involved in speech representations, or in more generic  mechanisms4. Lacking a mechanistic understanding of 
why patients perform poorly on such tasks deprives health practitioners of practical therapeutic targets for their 
subsequent rehabilitation.

When studying the neural mechanisms that relate physical stimuli to perception, the modern field of psy-
chophysics has largely moved from simply measuring sensory thresholds and psychometric functions, and now 
provides a toolbox of techniques to measure and fit multi-staged models able to simulate participant  behaviour12. 
Notably for the example of speech prosody, the psychophysical technique of reverse-correlation (or “classification 
images”)13 allows estimating, at the individual level, not only what sensory representations subtend the normal 
or abnormal perception of e.g. interrogative  prosody14, but also “internal noise” parameters that capture aspects 
of behavioral variability that are of potential neurological  relevance15,16.

While the representation + noise model has a rich history in healthy participants, with or without peripheral 
hearing  impairment17,18, its use in participants with neurological or developmental disorders has received rela-
tively little  attention19–21. Here we show on a sample of N = 22 right-hemisphere brain stroke survivors that such 
simple procedures promise to enrich the current clinical toolbox with more sensitive and informative markers 
of receptive aprosodia. While the same tool can be applied to study a variety of prosodic functions, incl. social or 
emotional, in this study we specifically target the perception of linguistic prosody, defined as the acoustic varia-
tions of suprasegmental cues such as tone, amplitude and speech rate that support language analysis beyond the 
phonetic level, incl. syntax, semantics, and discourse  structure22—for instance shaping sentences into questions 
or statements with rising or falling  intonations23. Using reverse correlation, we show that it is possible to estimate 
not only the internal representations that subtend how individual patients specifically perceive interrogative 
prosody, but also a quantitative measure of the consistency with which patients apply these representations in 
perceptual tasks, and that these two parameters have potential to surpass both the sensitivity and diagnostic 
richness of existing tools.

Materials and methods
Participants
N = 22 brain stroke survivors (male: 17; M = 57 yo, SD = 12.43), and N = 21 age-matched controls (male: 13; M = 58 
yo, SD = 13.34) took part in the study. There was no significant sex distribution difference between groups (Chi-
square test, p = 0.368), and no significant age difference (Mann–Whitney, p = 0.970).

All patients were in- or out-patients of the Physical Medicine & Rehabilitation Department, APHP Pitié-
Salpêtrière Hospital in Paris, France, undergoing speech therapy for different deficits post-stroke like swallow-
ing difficulties, neuro-visual impairments, attentional impairments, neglect, dysphasia etc. Patients included in 
the study (Table 1) had a history of supratentorial right-hemisphere ischemic stroke, corroborated by clinical 
assessments NIH stroke scale (NIHSS; M = 10.8) and brain MRI, and dating less than 1y (Median = 4 months) 
at the time of inclusion; were first-language French speakers; and had no disorders of wakefulness/conscious-
ness, dementia, severe dysarthria, psychiatric antecedents (> 2 months in-patient) or major visual or auditory 
impairment (> 40 dB HL). Patients with language comprehension deficits -aphasia- (score < 10/15 on the BDAE 
instruction-following task) were excluded from the study.

In addition, we recruited a group of N = 21 controls matched in age, sex and degree of hearing loss. Seven of 
these control participants were recruited via the INSEAD-Sorbonne Université Center for Behavioral Science, 
Paris, France, and took part in the experiment in a laboratory setting. The remaining 15 were recruited among 
the FEMTO-ST participant pool, and took part in an online version of the same procedure. Among these 15 
online participants, we concluded that one participant was not sufficiently engaged in the task, statistical results 
conducted with the full control group (including this outlier) are qualitatively similar to our main text conclu-
sions, and presented in Supplementary Text 2.

Clinical assessment
Two subtests of the French version of the “Montréal Evaluation de la Communication” (MEC)  protocol7 were 
administered to the patients to assess their linguistic prosody capacities (comprehension and repetition). The 
linguistic prosody comprehension subtest evaluated the ability to identify linguistic intonation patterns. This 
subtest consists of four semantically neutral simple sentences and each one is presented to the patient with three 
different intonations, for a total of 12 items. After listening to a sentence, the patient is asked to select the correct 
intonation among the three different written options (interrogative, imperative or affirmative). The linguistic 
prosody repetition subtest examines the ability to verbally reproduce linguistic intonations. It is formed of the 
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same four sentences as the comprehension task. The previously recorded stimuli are presented in random order. 
The patient is asked to repeat each sentence with the same intonation. The maximum score is 12 for both subtests.

In order to exclude patients with a significant hearing impairment from the study, patients were assessed 
using Lafon’s cochlear lists of monosyllabic words (List 2 and List 3)24. These were calibrated at an intensity of 40 
decibels (dB) and played through headphones. Only patients who scored 80% or more on both lists were included. 
In addition, the Boston Diagnostic Aphasia Examination (BDAE) command execution  subtest25 was used to 
exclude patients with comprehension disorders. Only patients with a score of 12/15 or higher were included. 
Some patients underwent MMSE (Mini-Mental State Examination) or MoCA (Montreal Cognitive Assessment) 
evaluations as part of their clinical follow-up, but these assessments were conducted at different times, making 
it difficult to perform direct comparisons. It’s important to note that the Boston Diagnostic Aphasia Examina-
tion (BDAE) command execution  subtest25 was used to exclude patients with comprehension disorders. Only 
patients with a score of 12/15 or higher were included. And none of these patients suffered from aphasia, as it 
was an exclusion criterion for our study.

To assess possible mood disorders, the Hospital Anxiety and Depression Scale (HADS) self-questionnaire26 
was administered to patients to assess their current level of anxiety and depression. It contains 7 questions for 
the anxiety part and 7 questions for the depression part, with a separate score for each. A score of 11 or more for 
each part indicates a possible anxiety and/or depression state.

To assess auditory attention, a subset of patients also underwent the sustained auditory attention subtest of 
the “Logiciel d’Attention en Modalité Auditive’’ (LAMA)27. The assessment and rehabilitation software “Aide 
Informatisée pour la Rééducation des Troubles Auditifs Centraux ’’ (Airtac2)28 was used to assess central auditory 
processing. Intensity discrimination and duration discrimination of non-verbal sounds were proposed to com-
pare central auditory processing abilities with the results of the Reverse Correlation task. Finally, the Montreal 
Battery of Evaluation of Amusia (MBEA)29 was selected to assess the music perception abilities of a subset of 
patients. Since the disorder of music perception (amusia) is primarily a disorder of pitch  perception30, the three 
tasks in the melodic organization part (scale test, contour test, interval test) were selected (See Table 1 for details).

Table 1.  Patients and control demographics and clinical characteristics. N = 22 right-hemisphere stroke 
survivors and N = 22 age-matched controls took part in the study. MEC, Montréal Evaluation de la 
Communication; BDAE, Boston Diagnostic Aphasia Examination.

Controls Patients

n 21 22

Sex, n (%)
f 8 (38.1%) 5 (22.7%)

m 13 (61.9%) 17 (77.3%)

Age, median [min, Q1, Q3, max] 58 yo [27,52,64,82] 60.5 yo [28,52.2,63,74]

Month after stroke, median [min, Q1, Q3, max] 4 mo [0,1,5,17]

Stroke type, n (%)
HEM 3 (33.3%)

ISCH 6 (66.7%)

NIH stroke scale (NIHSS), median [min, Q1, Q3, max] Available: N = 11(50%)
10 [2,5.5,16,20]

MEC Prosody Comprehension item, median [min, Q1,Q3, max] Available: N = 22 (100%)
9 [0,8,11,12]

MEC Prosody Repetition item, median [min, Q1, Q3, max] Available: N = 22 (100%)
11 [7,10,12,12]

MEC Total, median [min, Q1, Q3, max] Available: N = 22 (100%)
21 [9,18.2,22.8,24]

BDAE command execution item, median [min, Q1, Q3, max] Available: N = 22(100%)
14 [5,14,15,19]

Audiogram left-ear, median dBHL at 1000 Hz [min, Q1, Q3, max] 0 dBHL [0,0,15,35] Available: N = 7(31%)
20 dBHL [10,15,30,60]

Audiogram right-ear, median dBHL at 1000 Hz [min, Q1, Q3, max] 5 dBHL [0,0,20,30] Available: N = 7(31%)
15 dBHL [5,7.5,37.5,45]

Vocal audiogram, median% detection at 40 dB [min, Q1, Q3, max] Available: N = 13(59%)
99. % [85,94,100,100]

LAMA Sustained auditory attention score accuracy, median [min, Q1, Q3, max] Available: N = 12(54%)
30 [29,29.8,30,30]

LAMA Sustained auditory attention reaction time (sec), median [min, Q1, Q3, max] Available: N = 12(54%)
92.5 [63,85.8,137,192]

MBEA (Montreal Battery of Evaluation of Amusia), median [min, Q1, Q3, max] Available: N = 13(59%)
60 [48,57,71,85]

AIRTAC2 (Auditory discrimination), median [min, Q1, Q3, max] Available: N = 13(59%)
44 [36,42,47,48]

HADS (depression + anxiety), median [min, Q1, Q3, max] Available: N = 13(59%)
18.5 [7,11.2,24.8,35]

62 Section 4.2: Results



4

Vol:.(1234567890)

Scientific Reports |        (2024) 14:15194  | https://doi.org/10.1038/s41598-024-64295-y

www.nature.com/scientificreports/

Procedure
We recorded a 426-ms utterance of the French word “vraiment” (“really”), and generated prosodic variations by 
dividing it into six segments of 71 ms and randomly manipulating the pitch of each breakpoint independently 
using a normal distribution (SD = 70 cents; clipped at ± 2.2 SD), hereafter referred to as “stimulus noise”. These 
values were linearly interpolated between time points and fed to an open-source pitch-shifting toolbox (CLEESE, 
Python language, v1.0, available at https:// github. com/ neuro- team- femto/ cleese) developed for this  purpose31. 
We then presented patients with 150 successive pairs of such manipulated utterances (really/really?) asking them 
to judge which, within each pair, sounded most interrogative (examples of sound stimuli are available in the code 
repository shared with the article—see Code Availability). The sequence was divided into 3 blocks of 50 pairs. 
Without the participant’s knowing, the first and last block of each sequence contained identical pairs of sounds 
(a procedure called double-pas15,32, allowing us to examine response variability), but all other sounds in the 
sequence were otherwise distinct (in more details, N = 9/22 patients and N = 7/21 controls had only 25 repeated 
trials among block 2 and 3, while the other N = 13/22 patients and N = 14/21 controls had a complete repetition 
of the 50 trials in blocks 2 and 3; there was no statistical difference between the levels of internal noise measured 
with these two setups (patients: Mann–Whitney p = 0.24; controls: p = 0.13). N = 9/22 patients were additionally 
tested 4 repeated (one week apart), but we have only retained the first session and did not include these extra 
data points in the statistical analysis. Sounds were delivered using closed headphones (Beyerdynamics DT770) 
presented the stimuli dichotically (same signal in both ears) at an identical comfortable sound level (~ 70 dB 
SPL) to all patients and healthy subjects. The inter-stimulus interval in each pair was 500 ms, and the interval 
between successive pairs was 1 s. The procedure took about 15 min to complete.

Reverse‑correlation analysis
For each participant’s response data, we fitted a 2-stage psychophysical model consisting, first, of a prosodic 
template (or “internal representation”) to which sound stimuli are compared and, second, of a level of “internal 
noise” which controls how consistently this representation is applied to incoming stimuli (Fig. 1).

Participants’ internal representations (a time × pitch representation of an ideally interrogative pitch contour) 
were computed using the classification image  technique13 to differentiate between interrogative and non-inter-
rogative pitch contours. Specifically, we subtracted the average pitch contour of non-interrogative classifications 
from that of interrogative classifications. To normalize this resultant representation, we divide it by the root mean 
square of its values—this method involves squaring each value of the representation, averaging these squared 
numbers, and then taking the square root of this average to scale the representation accordingly. For each patient, 

Figure 1.  The representation + noise model. Patients were presented with 150 successive trials consisting of 
pairs of manipulated prosodies (A) and asked to judge, within each pair, which sounded most interrogative (B). 
Patient responses in each trial were fitted with a 2-stage psychophysical model (C), consisting, first, of a prosodic 
template (or “internal representation”) to which sound stimuli are compared and, second, of a level of “internal 
noise” which controls how consistently this representation is applied to incoming stimuli. See main text for 
details about the model-fitting procedure. In this work, we estimate the two model parameters (representation 
and noise) for each patient individually and compare them with patient records to test their value as markers of 
receptive aprosodia.
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we then quantified how similar their internal representation is to the average representation in the control group, 
by computing the mean squared error between the two representations, and used this “representation typicality” 
as a parameter to correlate with clinical measures. Representations for controls were computed using the same 
procedure, using only the first 150 trials of each session in order to match the number of trials seen by patients.

Participants’ internal noise (expressed in units of the standard deviation of stimulus noise) was inferred from 
response consistency and response bias across the repeated double-pass trials, using the simulation procedure 
of  Neri15. In short, we computed an idealized participant model responding to repeated stimuli pairs of various 
sensory evidence, perturbed its response with additive gaussian noise (“internal noise”), and estimated the prob-
ability for that model to give the same response for identical trials (i.e. response consistency) and the probability 
of giving the first response option (i.e. response bias), for different standard deviations of that internal noise. 
For each participant, we then inverted that model and obtained the value of internal noise (by exhaustive search 
between 0 and + 5 std) that minimized the error between the observed and predicted values for that participant’s 
consistency and bias. As in previous  studies15, we estimated internal noise conservatively between [0; + 5 std] in 
order to avoid unreliable estimates at large values, a known problem with double-pass procedures (see Appendix 
A). Internal noise values in the upper side of that range (e.g. illustrated in Fig. 3 between 4.8 and 5) may either 
correspond to true internal noise values, or to larger values for which we could not provide an exact estimate.

Both of these analyses (internal representations and internal noise) were conducted using an open-source 
Python toolbox built for this purpose (PALIN v1.0, Python language, v1.5, available at https:// github. com/ 
neuro- team- femto/ palin).

Statistical analysis
Group comparisons: because distributions of representation typicality and internal noise scores between patients 
and controls were non-normal, we compared population means using non-parametric (Mann–Whitney) inde-
pendent sample t-tests.

Correlation with clinical measures: linear associations between representation typicality and internal noise, 
and clinical assessments (MEC, Prosody Comprehension, Prosody Repetition, Airtac2) met the homoskedasticity 
assumption and were therefore estimated using ordinary least-square regressions without robust (HC) norms, as 
these are considered to increase false positive rates when testing small samples. In addition, because regression 
residuals were occasionally non-normal, we estimated statistical significance using bootstrapped confidence 
 intervals33. The analysis was implemented with the pymer.lm  package34 v4 0.8.2.

Ethics statement
The study was approved by Comité de Protection des Personnes CPP Ile-De-France V (ProsAVC, Decision of 
22/07/2020). All methods in this study were carried out in accordance with the relevant guidelines and regu-
lations, and all data in this study were obtained with informed consent from all subjects and/or their legal 
guardian(s).

Results
Both measures extracted from the reverse-correlation procedure allowed separating patients from controls: inter-
nal representations of interrogative prosody computed from control group responses exhibited a typical final-rise 
 contour14, with a marked increase of pitch at the end of the second syllable (Fig. 2-left), and control participants 
were able to apply these representations remarkably consistently across trials, with internal noise values M = 0.7 
(SD = 0.37) in the range of those typically observed for lower-level auditory and visual  tasks15 (Fig. 2-right). In 
contrast, patients’ internal representations had both lower amplitude (indicating less discriminative power) and 
more variable shape across individuals (Fig. 2-left; see also Fig. 3), and were applied with higher levels of internal 
noise (M = 2.54, SD = 1.90; Fig. 2-right). The two groups differed statistically for both representation typicality: 
M = 0.27 [0.16; 0.39], Mann–Whitney’s U(− 0.82) = 420, p < 0.001; and internal noise: M = − 1.84 [− 2.61; − 1.07], 
U(0.59) = 95.00, p = 0.001.

Within the patient group, internal noise values (and, to a lower extent, representation typicality) were statis-
tically associated with scores of the current gold standard for assessing deficits of prosody perception (MEC), 
demonstrating good concurrent validity. First, larger internal noise values were associated with lower (more 
severe) scores on the MEC prosody comprehension scale: noise:  R2 = 0.189, β = − 0.303 [− 0.596; − 0.010], t(20) =  
− 2.158, p = 0.043. Representation typicality also improved with better scores, albeit non-statistically  (R2 = 0.100, 
β =  + 0.03 [− 0.012; + 0.071], t(20) = 1.49, p = 0.15). Second, both measures had also good symptom specificity, as 
strikingly neither correlated with the MEC score for prosody repetition (representation:  R2 = 0.002, t(20) =− 0.219, 
p = 0.82, noise:  R2 = 0.041, t(20) =  − 0.92, p = 0.365), while both MEC scores were themselves positively correlated 
(r = 0.53).

An oft-quoted limitation of the MEC instrument is its poor sensitivity, with patients above the pathologi-
cal cut-off on the MEC prosody comprehension scale (9/12) still complaining of communication  difficulties8. 
Interestingly, our measures allowed clear separation of this group of MEC-negative patients (i.e. patients with 
MEC > 9) (N = 12/22) and controls (N = 21), both in terms of typicality of representation (M = 0.18 [0.06; 0.32], 
U (− 0.74) = 219.0, p = 0.001) and internal noise (M = − 1.54 [− 2.62; − 0.53], U(0.48) = 66, p = 0.026).

Finally, to examine the convergent validity and specificity of internal representation and internal noise meas-
ures, we investigated whether they were statistically associated with other constructs linked to central deficits 
common in stroke rehabilitation. Expectedly, both measures were associated with difficulties discriminating 
tone intensity and tone duration, as measured by AIRTAC2 (representation:  R2: 0.49, β =  + 0.040 [0.013; 0.068], 
t(11) = 3.27, p = 0.007; noise:  R2: 0.33, β = − 0.28 [− 0.54; − 0.020] t(11) =  − 2.36, p = 0.037). However, they were 
not associated with the patient’s capacity to detect rare auditory targets among distractors, as measured by LAMA 
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(representation:  R2: 0.130, t(10) = 1.22, p = 0.25; noise:  R2: 0.136, t(10) =  − 0.125, p = 0.23); or with the patient’s 
capacity to process musical melodies, as measured by MBEA scale and melody items (representation:  R2: 0.050, 
t(11) = 0.765, p = 0.46; noise:  R2: 0.00, t(11) = 0.027, p = 0.98). Regarding music ability in particular, MBEA was 
assessed in N = 13 (59%) of our patients, the majority of which N = 8 (62%) were found impaired for melody/
pitch processing with scores below the pathological cut-off score of 65/90. Out of the 8 patients who scored with 
melody amusia, 6 (75%) had representations that visually departed from controls. Comparatively, 3 out 5 (60%) 
of the patients without amusia had normal representations (Fig. S2).

Finally, internal noise (but not representation typicality) was found related to patients’ level of anxiety and 
depression, as measured by HADS (noise  R2 = 0.249; β = 0.108 [0.021; 0.196], t(20) = 2.57, p = 0.018; representa-
tion  R2 = 0.089, t(20) =  − 1.39, p = 0.178).

Discussion
In this report, we introduced a novel, simple psychophysical procedure which, by combining systematic digital 
manipulations of speech stimuli and reverse-correlation analysis, allows estimating the internal sensory repre-
sentations that subtend how individual patients perceive speech prosody, as well as the level of internal noise that 
govern behavioral variability in how patients apply these representations in prosodic perceptual tasks.

Tested on a sample of N = 22 right-hemisphere stroke survivors, our two proposed parameters of represen-
tation typicality and internal noise provide a promising alternative to the clinical gold standard for evaluating 
impairments of prosody processing (MEC). First, internal noise (and, to a lesser extent, internal representations) 
strongly associate with receptive aprosodia, and not expressive aprosodia, measured respectively by MEC recog-
nition and repetition scores within the patient group. Second, internal representations (and, to a lesser extent, 

Figure 2.  Patient parameters (internal representations and internal noise) estimated by reverse-correlation 
separate controls from patients above and below the pathological cut-off on the MEC prosody comprehension 
scale (9/12). Left: Internal representations of interrogative prosody computed from control group responses 
exhibited a typical final-rise contour, with a marked increase of pitch at the end of the second syllable. In 
contrast, patients’ internal representations had both lower amplitude and more variable shape across individuals. 
The bottom waveform illustrates the shape of the base sound used to generate stimuli (a male-recording of 
the word vraiment/really). Right: control participants were able to apply these representations remarkably 
consistently across trials, with internal noise values < 1 standard deviations of stimulus noise. In contrast, 
patients’ internal noise levels were larger and more variable, and scaled with prosodic difficulties measured by 
MEC.
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internal noise) have better sensitivity than MEC for separating high-functioning patients from controls. Finally, 
both measures appear to have relatively good specificity with respect to non-prosody-related impairments of 
auditory attention and auditory processing, although internal noise was also found associated with mood dis-
orders which, in our sample, were also predictors of MEC scores.

The fact that abnormal internal representations in our patient sample correlate with performance in prosody 
recognition but not repetition prompts the question whether impairments in perceptive representations are dis-
sociated from impairments in mapping process between these representations and the corresponding phonatory 
and articulatory commands involved in their production. On the one hand, the MEC “repetition task”, which 
consists of hearing a target expression produced by the therapist and subsequently reproducing it vocally, does 
not necessarily involve perceptual representations associated with the recognition of the expression as being e.g. 
interrogative. It could in principle result from the direct sensorimotor mapping of the auditory characteristics of 
the stimuli to the corresponding pattern of phonatory (in the case of pitch) and articulatory (in the case e.g. of 
phonemes or timbre) motor commands. It follows that low recognition scores could in principle be associated 
with good repetition scores (which indeed we’re seeing in a good share of our patients, see upper-left quadrant 
in Supplementary Fig. S1). This pattern of results is consistent e.g. with literature showing imitation of vocal 
gestures (such as smiling) without their simultaneous  recognition35. On the other hand, a wealth of research has 
documented strong links between action and perception in imitation tasks, and notably established that imitation 
or action simulation has a causal role in facilitating  recognition36. For instance, blocking the imitation of a facial 
expression has detrimental  behavioural37 and neurophysiological  effects38 on their simultaneous recognition. In 
that sense, it could be expected that patients with low repetition scores would also show low recognition scores 
(which is again consistent with the low number of data point in the bottom-right quadrant of Fig. S1). To further 
investigate these links, it would be interesting to collect additional data in which we specifically ask patients to 
vocalize interrogative prosodies (without providing any auditory examples), and examine the correspondence 
between their recognition kernel and their produced pitch profiles.

The fact that a majority of patients tested with abnormal melodic processing abilities (MBEA < 65) also had 
impaired prosodic representations (although the opposite was not true, see Fig. S2) brings questions about the 

Figure 3.  The representation + noise model captures a rich diversity of sensory/cognitive mechanisms 
underlying impairments of prosody processing after stroke. Center: Distribution of representation typicality 
and internal noise for controls and patients (considering all 4 sessions), overlaid with by kernel density estimate. 
Histograms on the marginal axes show univariate distributions for each variable in the patient group. Corners: 
Corner boxes show internal representations (top) and behavioral series of responses (bottom) for 4 illustrative 
patients. Patients in top corners have internal representations (blue) that are similar to controls (orange), but 
vary in amounts of internal noise (e.g. showing excessive response perseveration; top-right). Patients in bottom 
corners have atypical representations (blue), but some nevertheless retain healthy levels of internal noise (e.g., 
being normally consistent in wrongly expecting question phrases to decrease rather than increase in pitch; 
bottom-left). The estimation of internal noise was limited to the range [0; + 5std]; data points in the upper side 
of that range may either correspond to true internal noise values, or to larger values for which we could not 
provide an exact estimate, as illustrated here with a dotted line in the central panel (see Appendix for details).

66 Section 4.2: Results



8

Vol:.(1234567890)

Scientific Reports |        (2024) 14:15194  | https://doi.org/10.1038/s41598-024-64295-y

www.nature.com/scientificreports/

sensory/cognitive resources shared between speech and music processing. First, this pattern of results suggests 
that melodic processing and prosodic representations are at least partially subtended by common domain-generic 
mechanisms, plausibly linked to pitch contour processing. Such a mechanism would be consistent with previ-
ous research showing impairments of amusic patients in distinguishing questions from  statements30, emotional 
 prosody39 and discriminating lexical tones in tone  language40. Second, it remains that intact pitch/melodic pro-
cessing is not sufficient to maintain intact prosodic representations (which are impaired in 2/5 of MBEA-positive 
patients; Fig. S2-top). For this latter subset of patients, impaired representations could result from higher-level 
lexical or semantic impairments such as difficulties integrating pitch and phonemic information (e.g. failing to 
associate increasing pitch with the second phoneme of the word “vrai-ment”), or from an impaired semantic 
representation of what is a question and how it should sound like (e.g. some patients may be consciously expect-
ing that questions are associated with an initial pitch rise). This would be consistent with previous research 
showing stronger evidence of shared processes between speech and music at earlier and subcortical  levels41 than 
e.g. in processes of lexical or semantic  verification42. Further work could look at these possibilities by e.g. testing 
patients with monosyllabic words (aah?) or a non-semantic task in which patients have to identify which of two 
alternatives sounds more like a sound target (which only incidentally sounds like a question).

More generally, while our study includes right-hemisphere damage (RHD) patients based on a wealth of 
clinical literature associating stroke-related RHD with receptive  aprosodia1,4,5,43, our results are only correlational 
and merely observing changes in internal representation and internal noise in patients with right-hemisphere 
lesions does not necessarily mean these effects are caused by the right hemisphere damage. Without more direct 
evidence, one can only speculate about the possible neurological bases for these two types of abnormalities. In 
terms of representations, one might imagine the involvement of sensory areas, possibly lateralized and specialized 
for e.g. vocal sounds and/or the slow-varying spectral changes that are characteristics of prosodic pitch contours 
(e.g. right  STG44). Regarding internal noise, we may be looking at more diffuse causes, possibly involving frontal 
areas, and possibly less  lateralized4. To further look into these questions, future studies could examine possible 
dissociations with other types of lesions (typically, are left hemisphere stroke patient similarly impaired in rep-
resentations and/or noise) or use lesion-symptom mapping approaches within a RHD group to link both types 
of impairment to possibly more specific right  areas46.

In this study, we have focused on a specific type of linguistic prosodic function, namely the marking of inter-
rogation by a final pitch rise. Our focus on interrogative prosody in the present task should by no means be taken 
as a proposal that it constitutes the optimal test providing most coverage of stroke-related prosodic impairments, 
but rather as a proof of concept. The reverse-correlation paradigm lends itself ideally to investigate a wide range 
of other tasks, such as pitch contour representations in other types of linguistic prosody (e.g. imperative sen-
tences to complement the items available in MEC, or prosodic cues to word  boundaries47), emotional or social 
prosody (e.g. dominance and  trustworthiness14); but also other acoustic domains that pitch, such as loudness 
and speech  rate48 or timbre/phonological cues as used e.g. in phoneme  classification49. Because of its versatility, 
reverse correlation appears as a promising way to evaluate prosodic perception mechanisms mechanistically 
across such a wide range of tasks and cues.

In sum, the representation + noise model paints a simple yet potent portrait of the variety of sensory/cognitive 
mechanisms that can explain impairments of prosody processing after stroke: patients may differ from controls 
by having altered representations but a healthy level of internal noise (e.g., being normally consistent in wrongly 
expecting e.g. question phrases to decrease rather than increase in pitch—Fig. 3-left); by having normal repre-
sentations but abnormal levels of internal noise (e.g. showing excessive response perseveration and suboptimal 
executive control on top of otherwise normal sensory processing—Fig. 3-right); or both.

By separating these different profiles of pathology, it is our hope that the representation + noise model will 
provide more effective and individualized therapeutic targets for rehabilitation of individuals with impaired 
speech prosody perception than existing  measures50. Our data indicate that deficits in prosody perception can 
stem both from attentional/executive or representational problems, underscoring our approach’s utility in reveal-
ing the underlying mechanisms behind individual patients’ comprehension difficulties. Importantly, not all 
patients with attentional challenges will exhibit  aprosodia1, which positions our method as a complement to, 
rather than a replacement for, traditional attention assessments by pinpointing the specific contributors to 
perceptual difficulties. This effort aims to enrich our understanding and assessment of the complex nature of 
prosody perception and its deficits. For example, patients with the highest levels of internal noise may benefit 
from therapies that focus on attentional and executive skills, or from transcranial brain stimulation, which has 
been found to selectively manipulate internal noise in visual  tasks51. Similarly, for patients encountering difficul-
ties at the internal representation stage, targeted interventions could emphasize pitch contour discrimination or 
melody imitation tasks, potentially augmented with visual feedback to bolster the reformation of accurate internal 
representations of prosodic and musical  elements8,52. Finally, regarding clinical functionality, while the reverse-
correlation procedure is, for now, comparable in duration with the MEC perception tasks (MEC: M = 10–15 min, 
revcor: M = 15 min), it is also easy to dispense remotely (the current control sample was collected with an online 
app, https:// github. com/ neuro- team- femto/ revcor), does not require supervision or manual scoring, and can be 
optimized to even shorter durations using e.g. genetic programming optimizations that continuously adapt the 
presented stimuli to the patient’s previous  responses53. With such adaptations, the reverse correlation procedure 
could be used to evaluate the prognostic value of measuring changing levels of representation typicality and noise 
longitudinally, along the weekly or even daily course of rehabilitation.

Data availability
The datasets used and/or analyzed during the current study available from the corresponding author on reason-
able request.
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Code availability
Experimental procedures, stimuli, code for analyzing the data, as well as a selection of control (but not patient) 
data are available at https:// github. com/ neuro- team- femto/ revcor_ avc_ public. The online application for collect-
ing control data is available at https:// github. com/ neuro- team- femto/ revcor. Sound stimuli were generated with 
the CLEESE toolbox, Python language, v1.0, available at https:// github. com/ neuro- team- femto/ cleese. Kernel 
and internal noise analysis done with the PALIN toolbox, Python language, v1.0, available at https:// github. com/ 
neuro- team- femto/ palin.
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4.3 Conclusion: Revcor parameters as potential

biomarkers

In this study, we focused on a specific aspect of linguistic prosody: the marking of inter-

rogation through a final pitch rise. Our choice of interrogative prosody serves as a proof

of concept rather than a comprehensive test of stroke-related prosodic impairments. The

reverse correlation paradigm is highly adaptable and could be applied to various prosodic

functions, such as imperative sentences, emotional prosody (e.g., dominance, trustwor-

thiness) Ponsot, Burred, et al. (2018), or other acoustic features like loudness, speech

rate Goupil, Ponsot, Richardson, Reyes, and Aucouturier (2021b), and phonological cues

Osses, Spinelli, Meunier, Gaudrain, and Varnet (2023). Its versatility makes it a valuable

tool for mechanistically assessing prosodic perception across different contexts.

Ultimately, representation + noise model offers a framework for understanding prosody

impairments after stroke, distinguishing between deficits in internal representations, ab-

normal internal noise, or a combination of both.
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Limitations of the classical estimation

methods: a posthoc analysis of accuracy

In the preliminary study presented in Chapter 4, analyzing the patients’ kernels and in-

ternal noise suggested a way to identify distinct pathological profiles and uncover the

diverse sensory and cognitive mechanisms underlying prosody processing impairments

after stroke. These two biomarkers hold significant potential for clinical applications,

making their precise estimation crucial to ensure their reliability as long-term diagnostic

tools. Also, since not all patients exhibited deficits in both parameters, examining ex-

treme cases can provide valuable insights into the potential neurological bases of these

abnormalities. However, an important question remains: are these cases truly extreme,

or do the classical estimation methods used in Chapter 4 (namely: kernel: classification

images; noise: double pass) fail to accurately capture their impairments? Various fac-

tors could contribute to the uncertainty in these estimates. Some of them are already

discussed in the reverse correlation literature, for instance the number of trials used in

the experiment, and others specific to our patient population, namely their tendency to

perseverate in their responses. We present here a post-hoc analysis of estimation accuracy
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with these two factors, and conclude on how they impact the quality of estimates. This

chapter concludes Part II and draw a roadmap for the methodological contributions in

Part III.

5.1 Number of trials

In a reverse correlation experiment, one fundamental challenge is determining the suffi-

cient number of trials required to obtain a robust estimation of both kernel and internal

noise. Reverse correlation relies on stimulus sampling, meaning that more trials generally

provide better statistical power. However, in a clinical population, practical constraints

such as cognitive fatigue and attention skills must also be considered when setting trial

numbers.

5.1.1 Number of trials as a challenge to stroke patients

Stroke patients often experience post-stroke fatigue (Paciaroni & Acciarresi, 2019), which

can significantly impact their ability to maintain focus and perform demanding tasks over

time (Cumming et al., 2016). In addition, selective attention (as discussed in Chapter 2),

a critical capacity for filtering relevant information and ignoring distractions, can be par-

ticularly vulnerable following stroke. Both fatigue and attention deficits raise important

concerns about the number of experimental trials stroke patients can realistically com-

plete, as excessive cognitive strain may compromise their performance and the validity of

the data collected.

In our study, we limited the number of trials to 150 (100+50), with an additional 50

double-pass trials for estimating internal noise. While this number is already much smaller

than typical experiments (700 in Ponsot, Burred, et al. (2018), several 1000s in Neri

(2010)), it is an open question whether this number of trials was already inducing fatigue

in patients. To investigate this, we analyzed their response times across the 150 trials

(see Figure 5.1-top). As expected, post-stroke patients demonstrated generally slower

response times on cognitive tasks compared to controls (Patients, m = 1.91 s; Controls,
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m = 1.36 s) (Cumming, Brodtmann, Darby, & Bernhardt, 2012; Feigin et al., 2010),

consistent with the well-documented slowing of cognitive processing following stroke. Our

results did not reveal a consistent increase with trial number, which would typically be

expected if fatigue played a dominant role (Goh & Stewart, 2019). However, we observed

that in RHD patients, response times increased toward the end of Block 1, potentially

reflecting transient fatigue or attention fluctuations (see Figure 5.1-top). Interestingly,

response times decreased after the break before Block 2, which we speculate may reflect

a combination of recovery from fatigue and task familiarization or learning effects.

These are observational trends; to formally assess RT dynamics across the entire ses-

sion, we conducted a linear mixed-effects analysis on log-transformed response times.

The model included fixed effects for group (patients vs. controls), trial number, and

their interaction, with a random intercept for participant. Results showed that patients

were significantly slower overall (β = 0.234, p = 0.032), but both groups demonstrated a

significant decrease in response times across trials (β = −0.002, p < 0.001). The interac-

tion term between groups and trial number was also significant but small (β = −0.0004,

p = 0.002), indicating a slightly steeper reduction in response times for patients over time.

It is important to note, however, that changes in response time do not directly map

onto performance or fatigue per se. Several interpretations are possible: for instance,

patients might respond more quickly as the session progresses simply to “get it over

with,” rather than due to increased familiarity or reduced cognitive effort. Conversely,

longer response times could reflect greater engagement and a more deliberate attempt

to answer correctly, rather than cognitive slowing or fatigue. Thus, the relationship

between reaction times, task engagement, and cognitive fatigue remains complex and

multifactorial. Previous work has shown that stroke survivors experience within-block

fluctuations in task engagement, sometimes alleviated by breaks, but these temporal

dynamics cannot be solely attributed to a simple cumulative fatigue effect (Brosnan et

al., 2020).

Furthermore, when examining average response times across three separate blocks

of 50 trials each, we observed a noticeable decrease in response times between the first

and second blocks (see Figure 5.1-bottom left). A linear mixed-effects model on log-
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transformed response times revealed a significant main effect of block (β = −0.104, p <

0.001), indicating a systematic reduction in response time across blocks. The model also

showed a significant group-by-block interaction (β = −0.026, p < 0.001), suggesting that

patients exhibited an even greater decrease in response time across blocks than controls.

Controls’ average response times decreased from 1.63 seconds in Block 1 to 1.25 in Block

2 and 1.21 in Block 3. In patients, the drop was more pronounced, from 2.41 seconds

in Block 1 to 1.68 in Block 2 and 1.66 in Block 3. This pattern suggests two possible

interpretations for controls and patients: a learning effect, in which faster response times

reflect improved task performance after initial exposure to the task structure; or loss of

attention, in which patients become less engaged in the task after the first block, leading

to faster but potentially less controlled responses.

Examining kernel typicality (the similarity between a kernel and the kernel of a control

group), healthy participants show a progressive improvement in the typicality of their

mental representation across consecutive blocks (mean typicality: 0.84 in Block 1, 0.89

in Block 2, and 0.89 in Block 3). In contrast, stroke patients exhibit a decline in kernel

typicality across blocks (mean typicality: 0.58 in Block 1, 0.56 in Block 2, and 0.50 in

Block 3; see Figure 5.1-bottom right). A linear mixed-effects model confirmed this pattern,

revealing a significant group-by-block interaction (β = −0.064, p = 0.033), indicating that

typicality increased across blocks in controls but decreased in patients. This divergence

suggests distinct learning trajectories between groups, potentially reflecting impaired task-

related representation or retention mechanisms in stroke patients.

5.1.2 Effect of number of trials on kernel estimation

While the reverse correlation literature often discusses the choice of number of trials as

affecting the accuracy of kernel estimation (e.g., Burred et al. (2018)), precise simulations

of that effect are rarely reported. In particular, it appears plausible that, at low number

of trials, the effect of larger internal noise (as seen in our patients; see Chapter 4) has a

large influence on kernel estimation.

To benchmark the accuracy of kernel estimation that’s achievable with 150 trials, we
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Fig. 5.1 Reaction times and kernel typicality throughout the experiment Top: Mean reaction
times across trials for stroke patients (orange) and healthy controls (blue). While
patients show generally slower RTs throughout, both groups exhibit a steep initial drop
suggesting early task familiarization. Bottom left: Mean RTs across the three blocks
for stroke patients and controls. Patients exhibit a marked decrease in RT from Block
1 to Block 2, suggesting a possible recovery from fatigue or increased task familiarity
after the first break. Control participants show minimal change across blocks. Bottom
right: Kernel typicality by block. Controls improved across blocks, while patients
showed declining typicality, suggesting increased noise or perseveration.

used the PALIN toolbox. PALIN enables the simulation of a variety of linear observers

performing the same reverse correlation experiment as real participants, while we control

their true level of internal noise and criteria. We simulated an experiment with the same

number of trials as our study (n=150). The observer is assigned a known true kernel
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and completes 50 double-pass trials. This simulation is repeated 1000 times to estimate

the mental representation using two methods introduced in Chapter 3: the weighted-

average (“classification image”) method and the GLM method. Estimation error on the

kernel is evaluated by calculating the Pearson correlation between the true kernel and the

estimated kernel at different levels of true internal noise.

Palin Toolbox: Impact of internal noise on kernel recovery with limited trials

This simulation explores how varying internal noise levels (from 0 to 5) affect kernel

recovery accuracy using 150 trials per observer. Two estimation methods (classifi-

cation image and GLM) are compared across 1000 runs per condition, using kernel

correlation as the similarity metric.

observer_params = {'kernel':['random'],

'internal_noise_std':np.arange(0,5.1,0.5),

'criteria':[0]}

experiment_params = {'n_trials': [150], 'trial_type': [Int2Trial],

'n_features': [6],'external_noise_std': [100] }

analyser_params = {'kernel_extractor': [ClassificationImage,GLMKernel],

'distance': ['CORR']}

sim_kernel = Sim(SimpleExperiment, experiment_params,

LinearObserver, observer_params,

KernelDistance, analyser_params)

sim_kernel_fix = sim_kernel.run_all(n_runs=1000)

Results are shown in Figure 5.2. Both kernel estimation methods demonstrate high

kernel correlation at lower internal noise levels, with higher precision for the GLM method,

but a progressive decline is observed as internal noise increases. At internal noise levels

representative of healthy participants (Mσn = .8, in Chapter 4), both methods reach

correlations > 0.95. However, at levels representative of patients (Mσn = 2.8, in Chapter

4), the correlation degrades to 0.92.

In general, the limited number of trials (n = 150) constrains the precision of kernel

estimation, especially at higher noise levels. This limitation is evident in the confidence

intervals, which reflects greater variability in estimation as internal noise increases.
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Fig. 5.2 Impact of internal noise on kernel recovery with limited trials (n = 150) Effect of
limited trials (n = 150) on kernel estimation accuracy (y-axis) as a function of true
internal noise (x-axis). Two estimation methods are compared: weighted sum kernel
(orange) and GLM kernel (blue). Kernel accuracy decreases with increasing noise for
both methods. Vertical dashed lines indicate the mean estimated internal noise for
controls (blue, σ = 0.8) and stroke patients (red, σ = 2.8). This highlights the greater
impact of internal noise on kernel estimation quality in the patient group.

5.1.3 Effect of number of trials on internal noise estimation

Similarly, the small number of trials, and in particular the number of repeated double-

pass trials (2x n = 50), is likely to have an important impact on the accuracy of internal

noise estimation. Again, while this factor is sometimes discussed in the reverse correlation

literature (incl. in our own work Adl Zarrabi et al. (2024)), the impact is rarely quantified

and the typical solution for healthy participants is simply to increase the number of

double-pass trials.

To benchmark the accuracy of internal noise estimation achieved with the n = 150

trials of Chapter 4, we used PALIN to simulate an experiment with 150 trials, including

50 double-pass trials, repeated 1000 times to evaluate the estimation error of internal

noise over a range of linear observers with known levels of true internal noise between

[0,5]. The percentage error is calculated as the absolute difference between the true and
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estimated internal noise, normalized by the true value, and expressed as a percentage.

Palin Toolbox: Internal noise estimation error using Double-pass method with lim-

ited trials
This simulation evaluates internal noise estimation using the double-pass method,

where 50 of 150 trials are repeated. Internal noise values are systematically varied

between 0 and 5 (in steps of 0.1), and estimation accuracy is assessed over 1000

simulated observers using a precomputed agreement model (lookup 3.4).

observer_params = {'kernel':['random'],

'internal_noise_std':np.arange(0,5.1,0.1),

'criteria':[0]}

experiment_params = {'n_trials':[150], 'n_repeated':[50],

'trial_type': [Int2Trial],'n_features': [6],

'external_noise_std': [100]}

analyser_params = {'internal_noise_extractor':[DoublePass],

'agreement_model_file':['agreement_model_large.csv']}

sim_in = Sim(DoublePassExperiment, experiment_params,

LinearObserver, observer_params,

InternalNoiseValue, analyser_params)

sim_in_fix = sim_in.run_all(n_runs=1000)

The estimation error with the double-pass method with 50 repeated trials achieved

an unimpressive 40% relative error for noise levels between [0.5, 3.5] and increased to

50% for noise levels exceeding 3.5 (3.5). The error was comparable at internal noise

levels representative of controls (Mσn = .8) and patients (Mσn = 2.8), although it was –

perhaps counter-intuitively – a few percent points greater for controls.

While estimation error was null at zero internal noise (corresponding to pagree = 1), the

error was very large at small internal noise levels ([0,0.5]. This is both due to small-number

sampling errors and to the fixed grid size used for double-pass lookup (see Chapter 3 for

details). First, small internal noise corresponds to very low probabilities of disagreement

which, sampled at only n = 50 repeated trials, may across the experiment correspond to

only 1 or 2 trials with inconsistent responses. Second, because we used a lookup table

with a 0.2 search grid on internal noise, such small fluctuations may create large % errors.

This situation could be improved with lookup tables with non-linear grid resolution (e.g.,
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Fig. 5.3 Internal noise estimation error using Double-pass method (n = 150) Effect of limited
trials (n = 150) on internal noise estimation using the double-pass method. The y-axis
shows the percentage error in estimated internal noise as a function of the true internal
noise. Estimation error remains on average around 40% and relatively stable across a
wide range of internal noise levels but increases at very low and high extremes. Vertical
dashed lines mark the average internal noise levels for stroke patients (red, σ = 2.8)
and healthy controls (blue, σ = 0.8), demonstrating that double-pass estimates are
most accurate within this central range.

logarithmic), or with optimisation methods that alleviate the need for a fixed search grid.

It is to be noted that the estimation of low internal noise levels in the range [0,0.5] is

almost only a theoretical problem, as typical values for healthy controls are more typically

around 1. We will return to the problem of small internal noise estimation in Chapter 6.

In summary, while the clinical constraints of deploying reverse correlation during

speech therapy sessions compel us to use only a limited number of experimental trials

(fixed here at n = 150, incl. 2x50 double-pass), a post-hoc analysis with simulations

shows that this setup in fact severely limits the accuracy of estimates. While kernel

correlation degrades with increasing patient internal noise, it remains at an acceptable

0.90 (Figure 5.2). However, double-pass estimation of internal noise estimation at n=150

severely suffers at about 40 − 50% error (Figure 5.3), casting serious doubts on internal

noise results obtained in Chapter 4. While the quality of internal noise estimation would
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improve by increasing the number of trials (Chapter 3 - Figure 3.5, see also Chapter 6 be-

low), the analysis of kernel correlation across blocks (Figure 5.1) suggests that patients,

contrary to controls, are already at a limit in terms of experiment duration, and that

increasing the number of trials is impractical.

5.1.4 Perseveration phases observed

By examining our patients’ responses, we observe that some stroke patients consistently

chose the same stimulus across multiple successive trials. Figure 5.4 shows several exam-

ples of such patterns, which may be distributed throughout the experiment (subject 29)

or localized (subject 40); and become less (subject 41) or more frequent (subject 43) as

the experiment progresses.

From the perspective of the linear-observer model, participants exhibiting persevera-

tive behavior no longer rely on their decision model to guide their responses. Instead of

making choices based on their kernel, they disengage from actively applying it to the stim-

uli. It therefore appears suboptimal to evaluate decision parameters (kernel and noise)

on the basis of trials for which that decision criteria was not, or only partly applied.

Such perseverative episodes are likely manifestations of underlying attention deficits,

particularly in the domain of divided or alternating attention (Cramer et al., 2023). When

cognitive resources are insufficient to manage the demands of the task, patients may re-

vert to repetitive, habitual responses rather than flexible, adaptive choices. This view is

supported by evidence linking divided attention impairments to behavioral rigidity in neu-

ropsychological populations. Identifying these patterns is essential, as they mark intervals

when participants are no longer engaging in goal-directed decision-making, highlighting

the need for careful interpretation or exclusion of these trials from analyses focused on

perceptual or decision parameters.

In our experiment, we did not have the opportunity to directly measure participants’

attention during the blocks. However, one simple way to estimate perseveration is by

identifying streaks of repeated responses within each participant, session, and block. By

convention, trials are marked as perseverative if they belong to a streak of 15 or more
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Fig. 5.4 Variability in perseverative behavior of patients during the Task Examples of perse-
verative response patterns in stroke patients. Each panel shows binary responses (0 or
1) over 150 trials for four patients during Session 1. Clear perseverative patterns are
observed in all subjects, characterized by long sequences of repeated responses, either
sustained 0sec, 1sec. These perseverations can manifest in different temporal patterns
which suggest dynamic fluctuations in mental state and task engagement.

consecutive repeated responses, and we compute the “perseveration ratio” as the prob-

ability that a trial (out of 150) belongs to such a streak. As shown in Figure 5.5, the

perseveration ratio for patients (median = 0.64) is higher than controls (median = 0.56),

particularly in the first and second blocks.

We chose a relatively high threshold (15) for consecutive repeated responses for several

reasons. With random stimuli, short runs of repeated responses, such as three or four

in a row, can easily occur simply because the presented stimuli happen to align with a

participant’s internal kernel. In such cases, repeated choices may be entirely appropriate

and not reflect true perseverative behavior. Without access to ground-truth labels for
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the “correct” response (given the randomness of the stimuli) or an adaptive model that

can disambiguate between response alignment and habitual repetition, it is challenging

to distinguish genuine perseveration from correct or noisy responses. By setting a higher

threshold, we aimed to minimize false positives and focus on clear-cut cases where the

likelihood of purely stimulus-driven repetition is low. In Chapter 7 below, we provide a

more accurate method to estimate whether trials are perseverated or not.

Palin Toolbox: Perseverating observer

PALIN code for simulating perseverating observers, and compute kernel and internal

noise using the Classification Image and GLM Methods (kernels) and the Double

Pass method (noise).

# Observer parameters define kernel type, internal noise range, decision criteria,

# and state transition probabilities (for perseveration).

observer_params = {'kernel': ['random'], 'internal_noise_std': np.arange(1,5,0.5), 'criteria': [0],

'transition_matrix': [[[0.9, 0.1], [beta, 1 - beta]] for beta in beta_values]}

# Experiment parameters include trial counts, double-pass trials, stimulus features,

# and external noise level.

experiment_params = {'n_trials':[150], 'n_repeated':[50], 'trial_type': [Int2Trial],

'n_features': [7],'external_noise_std': [100]}

# Analyzer parameters for internal noise use the Double Pass method.

analyser_params_noise = {'internal_noise_extractor':[DoublePass],

'agreement_model_file':['agreement_model_large.csv']}

# Analyzer parameters for kernel estimation use ClassificationImage and GLMKernel methods.

analyser_params_kernel = {'kernel_extractor': [ClassificationImage,GLMKernel],'distance': ['CORR']}

# Simulate internal noise estimation for perseverating observers.

sim_in_per = Sim(DoublePassExperiment, experiment_params, PerseveratingObserver, observer_params,

InternalNoiseValue, analyser_params_noise)

# Simulate kernel estimation for perseverating observers.

sim_kernel_per = Sim(DoublePassExperiment, experiment_params, PerseveratingObserver, observer_params,

KernelDistance, analyser_params_kernel)

sim_kernel_perseveration_df = sim_kernel_per.run_all(n_runs=1000)

sim_in_perseveration_df = sim_in_per.run_all(n_runs=1000)

However, we acknowledge that this operational definition has limitations: a long se-

quence of repeated responses could occasionally reflect true alignment between stimulus

and kernel, and conversely, shorter streaks could sometimes indicate perseveration if they

occur in situations where the stimuli are highly contrasted. Thus, this metric may under-



Chapter 5: Limitations of the classical estimation methods: a posthoc analysis of
accuracy 83

estimate or overestimate the true extent of perseverative episodes.

It is also noteworthy that, even with this strict definition, control participants some-

times exhibited non-negligible perseveration ratios. This could reflect the imprecision of

our metric, the presence of similar cognitive fatigue or attentional lapses in healthy con-

trols. We will further explore the implications and limitations of this approach in Chapter

9.

Fig. 5.5 Perseveration Ratio Across Blocks (≥15 Repeated Responses) Perseveration ratio
across blocks for patients and controls, computed as the proportion of trials belonging
to a streak of at least 15 consecutive identical responses. Patients exhibit consistently
higher perseveration ratios than controls across all blocks, with a peak in Block 2 fol-
lowed by a slight decrease in Block 3. In contrast, controls show relatively stable and
lower perseveration levels. Shaded areas represent standard errors across participants.
These results suggest greater response repetition and reduced flexibility in patients,
especially during the middle phase of the task.

5.1.5 Effect of perseveration on kernel estimation

Because kernel estimation relies, roughly speaking, on the average of responses, it is likely

that perseveration has an impact on the accuracy of kernel estimation. For instance,
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some patients may appear to have representations similar to controls, despite underlying

perseverative tendencies.

Using the PALIN framework (see Box 5.1.4), we simulated a perseverating observer

with a probability p(a) of entering a perseverative phase and a probability p(1 − b) of

remaining in that phase. These parameters were varied to increase the proportion of per-

severative trials, simulating conditions where patients exhibit more repetitive behavior.

In this simulation, the perseverating observer performs the same reverse correlation ex-

periment as real participants, providing insights into how varying levels of perseveration

(within a limited number of trials, n=150) influence the accuracy of kernel estimation

and, below, that of internal noise. As above, kernel estimation accuracy is estimated

by kernel correlation, i.e., the similarity between the true kernel of the observer and the

estimated kernel. Like other simulations, this was repeated 1000 times to evaluate the

estimation error. In this simulation, the internal noise of the observers was systematically

varied between 0 and 5 in order to assess how estimation performance changes across a

broad range of noise levels.
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Palin Toolbox: Effect of perseverative responding on kernel estimation accuracy

with limited trials

This simulation explores how increasing perseveration probability (β) affects kernel

estimation accuracy in a two-state observer model. The transition matrix con-

trols the likelihood of remaining in the perseverative state, and kernel recovery is

evaluated over 1000 runs using both classification image and GLM methods.

beta_values = np.round(np.linspace(0.05, 0.95, 10), 2)

observer_params = {'kernel': ['random'],

'internal_noise_std': np.arange(1,5,0.5), 'criteria': [0],

'transition_matrix': [[[0.9, 0.1], [beta, 1 - beta]] for beta in beta_values]}

experiment_params = {'n_trials': [150],'n_repeated':[50],

'trial_type': [Int2Trial], 'n_features': [7],

'external_noise_std': [100]}

analyser_params = { 'kernel_extractor': [ClassificationImage,GLMKernel],

'distance': ['CORR'] }

sim = Sim(DoublePassExperiment, experiment_params,

PerseveratingObserver, observer_params,

KernelDistance, analyser_params)

sim_df = sim.run_all(n_runs=1000)

sim_df['beta'] = sim_df['transition_matrix'].apply(lambda x: x[1][1])

As shown in Figure 5.6, increasing the probability of remaining in the perseverative

phase, p(1 − b) leads to a noticeable decline in kernel correlation, particularly for proba-

bilities exceeding 0.5. At levels representative of our patient group (Mp = 0.64), kernel

correlation is about 0.70, a significant decrease from the non-perseverating case of Figure

5.2. This confirms that high levels of perseverative behaviour can distort the relationship

between true and estimated kernels.

5.1.6 Effect of perseveration on internal noise estimation

As for kernels, perseveration has the potential to impact the accuracy of internal noise

estimation. In double-pass experiments, perseverating behaviour may occur in repeated

trials, this may lead either to artificially large probabilities of agreement (repeated the

same response throughout the two repeated blocks) or to smaller probabilities when only

one block is contaminated. Conversely, if these behaviors do not manifest within the
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Fig. 5.6 Effect of perseverative responding on kernel estimation accuracy (n = 150) Kernel
estimation accuracy as a function of perseverative behavior, evaluated using simulated
observers over 150 trials. Kernel correlation (y-axis) decreases as the probability of
perseverative responses increases (x-axis), for both weighted sum kernel (blue) and
GLM kernel (orange). The sharp decline above a perseveration probability of 0.75
indicates a critical threshold where estimation quality degrades substantially. Vertical
dashed lines show the median perseveration probability for stroke patients (red, 0.64)
and controls (blue, 0.56), illustrating that patients tend to operate in a regime with
greater impact on kernel reliability.

repeated trials, they may go undetected by internal noise estimates and give the false

impression that a patient has normal consistency while they fail to do the task a significant

portion of the time. It is in fact an open question whether perseveration should be

considered a legitimate part of internal noise or whether it should be estimated separately,

leading to situations where patients may display important perseveration but low internal

noise anywhere else. Chapter 7 below will propose a method to separate both measures.
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Palin Toolbox: Effect of perseverative responding on internal noise estimation by

Double-pass

This simulation examines how varying levels of perseveration (β) affect internal

noise estimation using the double-pass method.

observer_params = {'kernel': ['random'],

'internal_noise_std': np.arange(1,5,0.5), 'criteria': [0],

'transition_matrix': [[[0.9, 0.1], [beta, 1 - beta]] for beta in beta_values]}

experiment_params = {'n_trials':[150], 'n_repeated':[50], 'trial_type': [Int2Trial],

'n_features': [7],'external_noise_std': [100]}

analyser_params = {'internal_noise_extractor':[DoublePass],

'agreement_model_file':['agreement_model_large.csv']}

sim_in_perseveration = Sim(DoublePassExperiment, experiment_params,

PerseveratingObserver, observer_params,

InternalNoiseValue, analyser_params)

sim_in_perseveration_df = sim_in_perseveration.run_all(n_runs=1000)

sim_in_perseveration_df['beta'] = sim_in_perseveration_df['transition_matrix'].apply(lambda x: x[1][1])

To benchmark the impact of perseveration on internal noise estimation, we used PALIN

to create simulations in which perseverating observers with a range of internal noise en-

counter simulated double-pass experiments, and we measured relative % error in internal

noise estimation with the double-pass method. As shown in Figure 5.7, an observer

with no perseveration exhibits an estimation error of approximately 40%, consistent with

previous findings in Figures 5.3 and 3.5. However, as the probability of perseveration

increases, the estimation error initially rises exponentially, with a sharp increase beyond

a threshold of perseveration probability p = 0.55. Notably, our patient group falls beyond

this limit, indicating that higher perseveration levels contribute to significantly greater

internal noise estimation errors. This suggests that perseveration disrupts the reliability

of internal noise estimation, making it more challenging to accurately capture perceptual

variability in perseverating individuals.

Beyond relative error averaged over a range of internal noises, Figure 5.8 shows the

impact of perseveration probability β on estimated noise at various noise levels. At low

levels of internal noise, perseverating observers exhibit consistent overestimation of noise,

and underestimation at larger noise values. Higher probabilities of perseveration (β) am-
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Fig. 5.7 Effect of perseverative responding on internal noise estimation (n = 150) by Double-
pass Internal noise estimation error (%) as a function of perseveration probability in
simulated observers with 150 trials. Estimation error remains relatively stable at lower
levels of perseveration but increases sharply beyond a probability of 0.75. Vertical
dashed lines represent the median perseveration probabilities for stroke patients (red,
0.64) and healthy controls (blue, 0.56), showing that patients are more likely to fall
within a range where estimation becomes less reliable.

plify this bias, causing greater deviations between true and estimated noise. Additionally,

higher β increases variability in estimates, as shown by the widening shaded regions in

the simulations.

In sum, perseverative behaviour, which may be as common as p ≃ 0.5 in patients, has

an impact on both kernel estimation (loosing up to 0.2 points of correlation to the true

kernel) and internal noise (adding up to 10−20% relative errors in extreme cases). While

it is possible to identify and e.g., remove streaks of successive identical responses before

computing such estimates, this method is likely to produce overestimates of perseveration

and does not take the relation between kernel and stimuli into account when deciding if

a trial is perseverated or not.
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Fig. 5.8 Impact of perseveration probability on internal noise estimation accuracy with Double-
pass Estimated versus true internal noise for simulated observers under varying levels
of perseveration probability (β). Each curve (purple) represents a different β value,
indicating the proportion of trials with repeated (perseverative) responses. At high β
levels (e.g., β ≥ 0.75), internal noise tends to be overestimated when the true internal
noise is low, and underestimated when the true internal noise is high. This pattern
reflects a systematic distortion in estimation induced by perseverative behavior. The
dotted diagonal line indicates perfect estimation.

5.2 Problem statement

In this chapter, we have identified two key challenges that affect the reliability of our

methods for estimating internal noise and mental representations: the limited number of

trials and perseveration. The limited trial count imposes constraints on the precision of

estimations, particularly that of internal noise. Perseveration disrupts both the stimulus-

response relation and response variability, leading to large estimation errors in both kernel

and noise. These two issues highlight critical limitations in our current approach, which

compromise the interpretability of the preliminary results described in Chapter 4 and,

more generally, the application of reverse correlation to patient populations.

Taken together, the results of Chapter 4 and 5 (Part II) lead to the following problem

statement for the remained of this thesis:
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In order to apply reverse correlation to patient populations and to fa-

tiguable/perseverating stroke patients in particular, one needs to develop kernel

and internal noise estimation methods that are both robust to low number of trials, and

to local disruptions of decision strategy such as perseveration.

The next part of this thesis will introduce several methodological contributions that

address this problem. In Chapter 6, we introduce and evaluate three new methods to

estimate internal noise in the absence of double-pass trials. These methods address both

problems above: first, because they do not rely on double-pass data, they allow using

the complete set of trials in an experiment to infer internal noise, which is likely an

advantage with small-trial setups such as here. Second, because they do not restrict

internal noise measurements to specific blocks, they are also expected to be less sensitive

to local perturbations such as perseverations. Of these three methods, two were developed

by collaborators (Ladislas Nalborczyk and thesis director JJ Aucouturier) and one (GLM

confidence intervals) by myself; my contribution is also to compare them against one

another and against the double-pass method.

In Chapter 7, we introduce a new method to conjointly estimate both linear-observer

parameters and perseverating episodes, using a joint model with two latent states (input-

output hidden Markov model, or GLM-HMM). We show that this model is able to re-

cover perseverating episodes by taking into account not only repeated responses but also

stimuli-response relations and to improve the accuracy of kernel and noise estimates across

non-perseverated episodes. In addition, the GLM-HMM method is compatible with the

internal noise methods developed in Chapter 6, while not with the double-pass method

(as perseverating episodes do not necessarily coincide with double-pass blocks).

In part IV, we then apply this new and improved set of methods to reanalyse the

experimental data of Chapter 4 and confirm or infirm the clinical interpretability of reverse

correlation estimates (Chapter 8). In addition, the accurate estimation of perseverating

episodes allows a supplementary analysis of what factors may influence perseveration in

patients, which we detail in Chapter 9.
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Part III

Methodological contributions: new

algorithms for the estimation of internal

noise and perseveration
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Three new methods to estimate internal

noise in the absence of double-pass

measurements

The results of Chapter 4 and 5 (Part II) lead to identifying the need for internal noise

estimation methods that are both robust to low number of trials and to perseverating pa-

tients, both aspects of our experimental conditions for which we showed that the classical

double-pass procedure is not well-suited.

In the present chapter, we introduce and evaluate three new methods to estimate in-

ternal noise in the absence of double-pass trials. These methods address both problems

above: first, because they do not rely on double-pass data, they allow using the complete

set of trials in an experiment. Second, because they do not restrict internal noise measure-

ments to specific blocks, they are also expected to be less sensitive to local perturbations

such as perseverations.

Of these three methods, two were developed by collaborators (Ladislas Nalborczyk

and thesis director JJ Aucouturier) and one (GLM confidence intervals) by myself; my
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contribution also includes comparing them against one another and against the double-

pass method.

This study was prepared in the format of a preprint, co-written with L.N, JJ.A. and

M.V, and which is intended for submission at a methodological journal such as Behaviour

Research Methods or Quantitative Methods for Psychology.

Adl Zarrabi, A., Aucouturier, JJ., Nalborczyk, L. & Villain, M. (2025). Three

new analysis methods to estimate internal noise in data-driven experiments, in the

absence of double-pass measurements. Unpublished preprint.

We present here a verbatim of the manuscript, preceded by a short summary of the

methods and main results.

6.1 Materials and methods

6.1.1 Baseline method: the double-pass procedure

The baseline method to evaluate internal noise from data-driven experiments is the so-

called double-pass procedure, which presents a sequence of stimuli twice and measures

the probability of agreement (p-agree) across repetitions (Burgess & Colborne, 1988; Lu

& Dosher, 2008). Probability of agreement can then be converted into an equivalent level

of internal noise σn using a backward model, which can be computed from computer

simulations (see Chapter 3).

6.1.2 Alternative 1: the Intercept Method

In order to evaluate internal noise from data-driven data that do not include double-

pass measurements, one first intuition is that, even if the data does not include exactly

repeated trials, it does include a distribution of non-identical trials that vary in how

much they resemble each other –some of them are quasi double-pass, others are more

distant. By ranking all pairs of trials by increasing internal distance in stimulus space

and measuring the consistency of responses over these pairs, we obtain a curve which, if
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interpolated to pairs of trials with 0 internal distance, intersects the y-axis at a value that

corresponds to the value of consistency that should have been observed for true double-

pass trials, had such trials been observed (see manuscript Figure 2, below). The procedure

involves a number of design parameters (e.g., whether the intercept is extrapolated with

a polynomial or a logistic fit), which we describe and evaluate in the manuscript below.

6.1.3 Alternative 2: Accuracy method

As an alternative heuristic to estimate pagree in the absence of double-pass data, we

propose to estimate the participant’s probability of agreement with an ideal, zero-noise,

zero-bias observer responding to the same data with the same kernel as the participant.

The rationale of this method is that, while double-pass experiments allow cancelling out

the variability due to random trials (i.e., external noise) by repeating them identically,

it is also possible to control for trial variability by simulating what a zero-noise observer

with the same kernel would respond - in both cases, all remaining source of inconsistency

should be attributed solely to internal noise. As above, the procedure involves a number

of design parameters (e.g., whether accuracy is computed on all trials or only hits or

correct rejections), which we describe and evaluate in the manuscript below.

6.1.4 Alternative 3: GLM Method

Finally, we already noted that an equivalent view of the linear-observer Eq. 3.9 is to

consider responses rt as the binary outcome of a generalized linear model (GLM), given

by:

yt = g(β0 +
N∑

i=1
βix

t
i) (6.1)

where the weights βi=1...N of the linear predictor correspond to the coordinates of kernel

k, and input xi correspond to stimulus data.

While a wealth of data-driven studies have used GLMs as a way to estimate kernels

(Knoblauch & Maloney, 2008), the width of the confidence interval surrounding the βis

can also be interpreted as an indicator of internal noise. We therefore propose to estimate

internal noise by estimating the 95% confidence intervals CIi around GLM weights βi



Chapter 6: Three new methods to estimate internal noise in the absence of
double-pass measurements 95

using their fitted standard errors backtransformed using the inverse of the link function

g. Because GLM kernel values are expressed in units of internal-noise standard deviation

(Murray, 2011), we normalize CIi by the absolute value of the corresponding βi, aggregate

them across kernel dimensions in a single measure of confidence, and convert them back to

standard-deviation estimates by multiplying by the square-root of the number of trials n.

The procedure involves a number of design parameters (e.g., should we average, max or

min the CIi over all kernel dimensions?), which we describe and evaluate in the manuscript

below.

6.1.5 PALIN Simulation methodology

To evaluate the methods, we used the PALIN simulation toolbox to implement the classical

double-pass procedure to estimate observer internal noise, as well as the three Intercept,

Accuracy and GLM methods described above. To evaluate each method, we simulated a

range of linear observers with known, true internal values, let them encounter simulated

experiments with varying numbers of trials, and compare each method’s capacity to re-

cover the true parameters. The process has inherent stochasticity, both in the observers

(generated with random kernels), experiments (generated with random trials), and deci-

sions (generated with random internal noise realization across trials). To account for this,

we applied each method over a number of independent runs, and report average measures

of accuracy and, when relevant, confidence intervals over runs and parameter settings.

6.2 Results

We compared the optimal variant of each method and their configurations (Intercept:

GLM, no binning; Accuracy: all trials, weighted and non-weighted; GLM: 2% jitter,

argmax/min, probit; see manuscript below for details) against each other and against

the double-pass method, over their capacity to estimate true internal noise for simulated

experiments.

At n=1000 trials, both the Intercept (Relative error:23%) and Accuracy (RE:25%)
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methods provided better estimates than the traditional double-pass method (RE:33%).

The GLM method (RE:38%) was less accurate as double-pass, but mostly because of its

overestimation of low internal noise values. When restricted to σn > 1, GLM was more

accurate than double-pass (RE:19%), and in fact both other methods.

Perhaps most importantly for our context here, at a low/very-low number of trials

(ex. n = 100 single-pass or n = 50 repeated trials), the double-pass method evaluates

with an unimpressive 48% relative error ([0.8–1.8] around the typical healthy participant

estimate of 1.3 - Neri (2010)), while the best method (Accuracy) achieves an error of 30%

(Manuscript Figure 10, reproduced below). Error rates below 20% are reached as early

as 600 single-pass trials, using the GLM method under the assumption that σn > 1.

Fig. 6.1 i
n log scale]Relative error of internal noise estimation across methods and trial counts

[100, 10000] in log scale. Intercept (Intercept_glm) and Accuracy
(Distance_not_weighted) show consistently lower error than Double_pass across all
trials counted up to 1000. While GLM_probit_aggmin overestimates internal noise at

low levels, but it performs best among all methods when the noise level is restricted to
σn >1.

6.3 Study
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Abstract

One of the methodological advantages of data-driven reverse-correlation exper-
iments is to allow estimating not only the sensory/cognitive representations of
participants, but also their internal noise. The dominant strategy to estimate
internal noise from data-driven experiments is the double-pass procedure, in
which responses to identically repeated trials are used to derive a measure of con-
sistency. However, the double pass procedure is plagued with important practical
limitations, among which its lack of precision for short experiments, its vulnera-
bility to local perturbations, and its assuming that noise is stationary throughout
the experiment. In this work, we introduce and evaluate 3 alternative analyti-
cal techniques to estimate internal noise from data-driven experiments, which do
not require the availability of double-pass measurements and are therefore well-
suited to short or continuous experimental designs. Using computer simulations,
we show that the three techniques consistently outperform double-pass estima-
tion for experiments with low number of trials (<1000), often more than halving
percentage error. We make the three techniques available in an open-source
Python/R toolbox and encourage the community to experiment with them.
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1 Introduction

While the idea of presenting an unknown system with random input sequences in order
to estimate its transfer function can be traced back to Wiener-Volterra theories of sys-
tem identification (Lee & Schetzen, 1965), its application to the modeling of cognitive
systems has long been restricted to neurophysiological research, notably to character-
ize receptive fields of individual retinal (Marmarelis & Naka, 1972) or auditory neurons
(Eggermont, Johannesma, & Aertsen, 1983). Starting possibly with the work of Ahu-
mada and Lovell (1971), the technique was then adapted to human psychophysics,
using randomized visual or auditory stimulus in input, and taking behavioral choices
(e.g., yes/no responses) instead of neuronal spikes as the systems’ output variables. In
the process, the procedure has taken on a number of alternative names, incl. reverse
correlation (Ringach & Shapley, 2004), classification images (Murray, 2011), bubbles
(Gosselin & Schyns, 2001), response-triggered averaging (Owen Brimijoin, Akeroyd,
Tilbury, & Porr, 2013) or, perhaps most inclusively, data-driven methods (Adolphs,
Nummenmaa, Todorov, & Haxby, 2016). In the auditory domain, data-driven experi-
ments were used to study low-level sensory processes such as the detection of tones in
noise (Ahumada & Lovell, 1971) or loudness weighting (Ponsot, Susini, Saint Pierre, &
Meunier, 2013), language processes such as speech intelligibility (Venezia, Hickok, &
Richards, 2016) or phoneme categorization (Varnet, Wang, Peter, Meunier, & Hoen,
2015), as well as higher-level decision tasks such as social prosody (Ponsot, Burred,
Belin, & Aucouturier, 2018) or the vocal detection of sleepiness (Thoret, Andrillon,
Gauriau, Leger, & Pressnitzer, 2024). In the visual domain, data-driven methods have
also found wide application not only for low-level detection and discrimination tasks
such as line detection (Neri & Heeger, 2002) or letter identification (Solomon & Pelli,
1994), but also for face recognition (Mangini & Biederman, 2004), emotional expres-
sions (Jack, Garrod, Yu, Caldara, & Schyns, 2012) or social traits (Dotsch & Todorov,
2012).

A prominent model to understand data-driven methods is the linear observer
model (Lu & Dosher, 2008; Murray, 2011). Consider a 2-alternative forced-choice
(2AFC) experiment where two randomized signals st1 and st2 are presented in each
trial t, and an observer is tasked to identify which of s1,s2 best matches an internal
template k (typically called a kernel, after Wiener’s theory). A minimal model for how
such an observer may come to a decision is to compute decision variables dt1 and dt2 by
taking the dot product of the stimuli with the kernel s · k, and add realizations from
an independent source of ‘internal noise’ n (called ‘internal’ in contrast to ‘external
noise’, which is the noise applied experimentally to the stimuli s1 and s2):

dt1 = st1 · k + nt
1 (1)

dt2 = st2 · k + nt
2 (2)

2
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The model assumes that the observer identifies the signal as s2 if d2 plus some constant
b (response bias) is larger than d1:

(st2 − st1) · k + (nt
2 − nt

1) > b (3)

or, equivalently,

rt =

{
2 if (st2 − st1) · k + nt > b

1 otherwise
(4)

where n is a source of internal noise with a variance σn that is twice the variance of n1

and n2 (for a review of alternative formulations of observer models, see Lu and Dosher
(2008)). Based on this model, data-driven methods provide procedures to estimate
both kernel k, internal noise σn and bias b from a series of stimulus-response pairs
(st1, s

t
2; r

t) corresponding to how a given observer responded to a given experiment.
Importantly, while a majority of studies focus on analysing observer kernels k,

often describing them as the primary (linear) mechanism behind the observed pro-
cess (Adolphs et al., 2005), the associated internal noise σn isn’t just a waste-basket
parameter capturing all remaining nonlinearities in the process (i.e. the residual to
an imperfect linear fit), but rather a genuine property of the biological system. It
is indeed well-established that stochasticity is pervasive at all levels of biological
information-processing systems, from thermodynamic/quantum noise acting on sen-
sory receptors (e.g. photons hitting retinal photoreceptors at random rates), variability
in the strength and timing of neuronal action-potential transmission (e.g. ‘background‘
spontaneous neurotransmitter release in synapses), up to macroscopic variability in
response or motor behaviour (Faisal, Selen, & Wolpert, 2008). In other words, the rep-
etition of identical stimulation to a participant does not generate identical responses,
and that amount of variability is a mechanistic property of the sensory-cognitive pro-
cess in the same way that the kernel is (Neri, 2010). For instance, phenomena such as
stochastic resonance show that the addition of an optimal level of noise to a weak input
can enhance its detectability (Russell, Wilkens, & Moss, 1999), and different internal
noise levels may be the only thing that separates sensory processes with otherwise sim-
ilar kernels or sensitivity (e.g. luminance and contrast perception - Allard and Faubert
(2006)). Previous studies that estimate internal noise from data-driven paradigms have
for instance documented that it is statistically independent from dprime sensitivity
Neri (2010); that its population-average level is similar across sensory modalities (Neri,
2010); that it is consistent across tasks intra-individually Vilidaite and Baker (2017);
that it increases with aging (Yan et al., 2020) and that it can be modulated with
repeated transcranial magnetic stimulation (rTMS) in sensory cortices (Vilidaite &
Baker, 2018). At the clinical level, abnormalities in internal noise level have been asso-
ciated with deficits of language prosody perception after a brain stroke (Adl Zarrabi
et al., 2024), or with autism spectrum disorders (Park, Schauder, Zhang, Bennetto,
& Tadin, 2017; Vilidaite, Yu, & Baker, 2017). In many experiments, it is therefore at
least as important to estimate internal noise as the kernel.

The dominant analytical strategy to evaluate internal noise from data-driven exper-
iments is the so-called double-pass procedure. Because response variability to identical
stimuli in the linear observer (Eq.4) can only be attributed to internal noise, the

3
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double-pass procedure presents a sequence of noisy stimuli multiple times (typically,
twice) and measures the consistency of responses as a probability of agreement across
repetitions (Burgess & Colborne, 1988; Lu & Dosher, 2008). Probability of agreement
can then be converted into an equivalent level of internal noise σn using computer
simulations of the linear model (see e.g. Goupil, Ponsot, Richardson, Reyes, and
Aucouturier (2021) and Methods, below). While double-pass consistency is considered
the easiest and most direct way to estimate internal noise in data-driven studies, with
regular methodological discussion on how to best implement it (Hasan, Joosten, &
Neri, 2012) or what precision it can achieve (Adl Zarrabi et al. (2024)-Supplemental
info), the procedure remains plagued with important practical limitations. First, the
precision of double-pass consistency increases with the number of repeated stimuli,
and duplicating stimuli mechanically adds duration to the experiment. This may be
impractical when working with fatigable patients (Adl Zarrabi et al., 2024) or in large-
N experimental designs with online participants. Second, double-pass consistency is
fragile to local perturbations in the experiment. For instance, technical problems or
participant distraction occurring during a double-pass block can be eliminated from
kernel estimates by discarding those trials, but will perturbate the complete measure
of internal noise. Third, the procedure can only provide a global measure of internal
noise over the experiment (ex. comparing the first and last block of trials) and does not
allow measuring continuous changes of internal noise in situations where it cannot be
assumed to be stationary, or in response to experimental manipulations. Alternative
procedures have been introduced to estimate internal noise that do not require double-
pass measurements (e.g. equivalent noise method - Pelli (1985); pedestal masking -
Vilidaite and Baker (2017)), but they require specific experimental designs (typically,
staircase procedures) and suffer from the same limitations.

In this work, we introduce and evaluate 3 alternative analytical methods to esti-
mate internal noise from data-driven experiments, which do not require the availability
of double-pass measurements or specific staircase procedures, and are therefore well-
suited to short and/or continuous experimental designs. The first two strategies are
based on consistency metrics that approximate double-pass probability of agreement
using non-identically repeated trials, while the latter is a direct evaluation of standard
deviation around the kernel. For each, we evaluate the impact of key design parame-
ters, and offer a comparison of their performance to that of the double-pass procedure
using simulation data. We also provide Python and R-language implementations of
the new methods in the form of a novel open-source toolbox1.

2 Analysis techniques for the estimation of internal
noise

2.1 Baseline method: Double-pass consistency and simulated
backward models

The baseline method to evaluate internal noise from data-driven experiments is the so-
called double-pass procedure, which presents a sequence of stimuli twice and measures

1https://github.com/neuro-team-femto/palin
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the probability of agreement pagree across repetitions (Burgess & Colborne, 1988; Lu &
Dosher, 2008). Probability of agreement can then be converted into an equivalent level
of internal noise σn using a backward model, which can be computed from computer
simulations.

In more details, the ideal observer model of Eq. 4 provides a generative model by
which one can simulate the responses given by an observer with a given kernel and
internal noise level. From these responses to simulated experiments, one can evalu-
ate an empirical probability of agreement pagree over n repeated trials. This provides
a forward model that associates an observed pagree to the (true, known) value of an
observer’s internal noise value σn under the linear observer assumption. This model
is stochastic: for a given observer, and a given experiment, responses have stochas-
ticity because of internal noise realizations, and pagree therefore lies on a probability
distribution for each value of σn.

The task of estimating internal noise from a real observer’s response is the cor-
responding backward model : from an empirical observation of pagree over n repeated

trials, find the most plausible internal noise level ˆsigman that would forward-generate
this probability. To extend to the case where observers are biased (i.e a non null
parameter b in Eq. 4), one can also observe probability of answering the first interval
(in a 2AFC design) pfirst. In this generalized situation, the forward model maps two
hidden variables (internal noise σn and observer bias b) to two observations (pagree
and pfirst).

A typical practical implementation of this procedure is to simulate observers with
an arbitrary kernel (ex. a simple scalar) and a grid of (true, known) internal noise
σn and bias b values and let them encounter a single large (e.g. n = 1000 trials or
more) experiment for several runs (e.g. 100 or 1000); computed the average value of
pagree and pfirst over several realizations of the same simulated experiment for each
value of σn and b; and store this in a lookup table. Given the empirical observation of
probabilities pagree and pfirst for a real observer, the procedure can then find the pair

of internal noise ˆsigman and bias b̂ that correspond to the closest pair of probabilities
in the table.

Figure 1 illustrates typical lookup data computed using a simulated linear observers
with σn ∈ [0, 5] and b ∈ [−5, 5], expressed in units of external (stimulus) noise.
Empirical probabilities pagree and pfirst are computed over simulated double-pass
experiments with n = 104 repeated trials, and averaged over 10 realizations. For unbi-
ased observers, σn maps non-linearly but bijectively to pagree. However, symmetry of
pagree for positive and negative biases b illustrates the need to include pfirst to dis-
ambiguate the underlying values of b and σn. Although authors have routinely used
simulated forward models to estimate internal noise from double-pass data-driven
experiments (Goupil et al., 2021; Neri, 2010; Ponsot et al., 2018), it is to be noted
that pagree and pfirst also have analytical asymptotic formulations in the n → ∞ case,
which can also be used to compute a backward lookup table (see Appendix A).

5
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Fig. 1 Lookup data computed using simulated linear observers which show the influence
of internal noise σn ∈ [0, 5] and decision criterion b ∈ [−5, 5] on pagree and pfirst S(forward
model) Left: The simulated pagree is highest when internal noise is low and bias is large (either
positive or negative) and it is lowest when the bias is zero and internal noise is high. The plot is
symmetric around b = 0, which illustrates the need of using pfirst to disambiguate the direction of
bias. Right: The simulated pfirst increases monotonically with bias and captures directional trends
in responses independently of stimuli. Lower internal noise and more positive bias associated with a
higher pfirst.

2.2 Alternative 1: Intercept method

In order to evaluate internal noise from data-driven data that do not include double-
pass measurements, one first intuition is that, even if data does not include exactly
repeated trials, it does include a distribution of non-identical trials that vary in how
much they resemble each another - some of them quasi double-pass, other more distant.
By ranking all pairs of trials by increasing internal distance in stimulus space, and
measuring the consistency of responses over these pairs, we obtain a curve which, if
interpolated to pairs of trials with 0 internal distance, intersects the y-axis at a value
that corresponds to the value of consistency that should have been observed for true
double-pass trials, had such trials been observed.

In more details, using response data from a n-trial 2AFC experiment, we consider

all n(n−1)
2 combinations of trials i and j, compute their vector difference d⃗i,j as

∆⃗i,j = ((si1 − si2)− (sj1 − sj2)) (5)

and use it to derive a measure of internal distance, either as the L2-norm (i.e., how
similar the two trials are physically) or, if available, by dot-product projecting it on
an estimate of the participant’s kernel k (i.e. how similar the trials’ decision variables

6
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are for this participant):

d(i, j) =

{
RMS(∆⃗i,j)

|∆i,j · k| (6)

where RMS is the root-mean-square of the vector coordinates of the trial difference.
For each pair of trials (i, j) with internal distance d(i, j), we then compute response

agreement ri,j as

ri,j =

{
1 if ri = rj

0 otherwise
(7)

where ri is the trial response defined as Eq. 4. Finally, we estimate pagree as the y-
axis intercept of a parametric curve fitted on the graph of ri,j against d(i, j). To do
so, we either group trial pairs of similar internal distance d(i, j) using k = 1 . . . nbins

(nbins 50-100, with an optimal value to be determined) and compute for each bin k
the probability of agreement pkagree as the average agreement among all pairs in k

pkagree =
1

|Ωk|
∑

(i,j)∈Ωk

ri,j (8)

where Ωk is the set of all trial pairs (i, j) in bin k, or do not bin and consider all n(n−1)
2

pairs and fit the raw binary agreements ri,j . In practice, the distribution of ri,j and
pkagree along increasing d(i, j) is roughly sigmoid-shaped (Fig. 2) and to estimate the
intercept, we propose to either fit an order-3 polynomial p(d(i, j)) and compute p(0),
or to fit a generalized linear model (GLM) with a logistic link function and extract
the intercept of the linear model (in probit space).

7
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Fig. 2 Estimating probability of agreement at different bin levels for trial pairs using
polynomial interpolation. Trial pairs, generated a simulated 1000-trial experiment with an
observer at σn = 1, are grouped by increasing internal distance (x-axis) and agreement probabilities
are computed per bin (y-axis). A degree-3 polynomial is fitted to the binned values (orange), and
its y-axis intercept provides an estimate p̂agree. Black dot marks true pagree (0.76) observed in the
simulated experiment (1000 double-pass trials)

Figure 2 illustrates the typical application of the procedure on illustrative simulated
data, where the observer’s true internal noise value is known and controlled (here, σn =
1). Trial pair data d(i, j) are binned with nbins = 50, and agreement between pairs is
averaged as probabilities of agreement in each bin. The y-intercept of a polynomial fit
to these data gives an estimate of p̂agree for the unobserved case that d(i, j) = 0, which
can be compared with pagree estimated over double-pass trials of the same experiment
(here, an empirical value pagree = 0.76 measured on 1000 repeated trials). As in the
double-pass case, pagree can then be converted to internal noise value σn (and bias b)
with a backward lookup model (see Section 2.1).

In sum, the Intercept method provides a heuristic to estimate pagree over unob-
served repeated trials, by extrapolating the agreement of pairs of imperfectly repeated
trials over the actual experiment. The procedure involves a number of design param-
eters, namely whether trial pair distance d(i, j) is computed as physical trial distance
or as a projection on the participant’s kernel, whether agreement data is binned as

8
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pkagree or left as ri, j, and whether the intercept is computed with a polynomial or
GLM fit. In the following, we evaluate these design choices against simulated data,
and provide a recommendation for the parameters that provide the best estimates.

2.3 Alternative 2: Accuracy method

As an alternative heuristic to estimate pagree in the absence of double-pass data, we
propose to estimate the participant’s probability of agreement with an ideal, zero-
noise, zero-bias observer responding to the same data with the same kernel as the
participant. The rationale of this method is that, while double-pass experiments allow
to cancel out the variability due to random trials (i.e., external noise) by repeating
them identically, it is also possible to control for trial variability by simulating what a
zero-noise observer with the same kernel would respond - in both cases, all remaining
source of inconsistency should be attributed solely to internal noise.

In more details, for a given set of n single-pass trials (st1, s
t
2) and participant

responses rt, we compute the participant’s kernel k - typically, using the classification-
image method of computing the average of stimuli chosen as one response option,
subtracted with the average of stimuli chosen as the other option (Murray, 2011).
We then compute a binary variable a(t) that describes the agreement of participant
responses rt with the zero-noise, zero-bias decision criteria (st2 − st1) · k

a(t) =





1 if (st2 − st1) · k > 0 and rt = 2, or

if (st2 − st1) · k < 0 and rt = 1

0 otherwise

(9)

We then compute the probability of agreement P [a(t) = 1] over n (or, equivalently, the
mean accuracy of response 1

n

∑
t a(t)), and take this measure as an estimate of p̂agree:

p̂agree = P [a(t) = 1] =
1

n

∑

t

a(t) (10)

.
As an alternative, we investigate two variants of the accuracy procedure: first,

instead of computing P [a(t) = 1] for all trials, we consider computing it only for hits
(conventionally defined as rt = 2 when (st2− st1) ·k > 0), i.e. P [a(t) = 1/(st2− st1) ·k >
0]), or only for correct rejections P [a(t) = 1/(st2 − st1) · k < 0]). Second, instead of
simply averaging a(t) over all trials, we consider weighting it by the trial’s (absolute)
activation magnitude, i.e.

p̂agree =

∑
t |(st2 − st1) · k|.a(t)∑

t |(st2 − st1) · k|
(11)

with the rationale that agreement is more important on trials where the response if
normally unambiguous.

In sum, the Accuracy method provides a heuristic to estimate pagree over single-
pass trials by computing the agreement of the participant’s response with a zero-noise,
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zero-bias observer over the same trials. The procedure involves a number of design
parameters, namely whether accuracy is computed on all trials or only hits or correct
rejections, and whether accuracy is weighted by trial activation. In the following, we
evaluate these design choices against simulated data, and provide a recommendation
for the parameters that provide the best estimates.

2.4 Alternative 3: GLM Method

An equivalent view of Eq. 4 is to consider responses rt as the binary outcome of a
logistic regression (or, equivalently, a generalized linear model - GLM), given by:

yt = g(β0 +

N∑

i=1

βix
t
i) (12)

where the weights βi=1...N of the linear predictor correspond to the coordinates of
kernel k, and input xi correspond to stimulus data (in the 2AFC case of Eq. 4, xt

i

is the ith coordinate of stimulus difference st1 − st2) - both of dimension N ; and g a
non-linear link function (logit or probit). While a wealth of data-driven studies have
used GLMs as a way to estimate kernels (Knoblauch & Maloney, 2008), the width of
the confidence interval surrounding the βis can also be interpreted as an indicator of
internal noise.

In more details, we propose to estimate the internal noise of an experimental
participant by fitting their experimental data with a probit/logit taking as input the
N -dimensional vector of stimulus difference st1 − st2 (in the case of 2AFC), and as
output the binary outcome 0/1 of which stimulus was chosen. We then estimate the
95% confidence intervals CIi around GLM weights βi using their fitted standard errors
backtransformed using the inverse of the link function (a procedure implemented as
stats.confint(model) in R or model.conf int() in Python statsmodel). Because
GLM kernel values are expressed in units of internal-noise standard deviation (Murray,
2011), we then normalized confidence interval width CIi by the absolute value of the
corresponding βi

ˆCIi =
CIi

|βi|
(13)

This procedure results in N estimates of variability, around each dimension of the
kernel. Because internal noise is typically modeled as a one-dimensional distribution
acting on the (scalar, dot-product) decision variable rather than on individual kernel
components (Eq. 4), we therefore aggregate the N estimates of ˆCIi using an statistics,
to be determined among:

• min: ĈI = mini ˆCIi

• max: ĈI = maxi ˆCIi

• mean: ĈI = meani ˆCIi

• median: ĈI = mediani ˆCIi

• argmin: ĈI = ˆCIj where j = argminiβi

• argmaxn: ĈI = ˆCIj where j = argmaxiβi

• argmedian: ĈI = ˆCIj where j = argmedianiβi
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Finally, we convert confidence intervals (essentially standard errors) to estimates
of standard deviation, by multiplying them by the square-root of the sampling unit
(number of trials n), taking this value as the estimate of observer internal noise σ̂n.

σ̂n = ĈI√n (14)

Figure 3 illustrates the typical application of the procedure on illustrative simulated
data, where the observer’s true internal noise value is known and controlled, using
the argmax aggregation strategy and for a range of number of trials n. The figure
illustrates that ĈI estimates typically scale linearly with true internal noise values
(Figure 3-bottom left) and non-linearly as the square root of n, while σ̂n corrects
this dependency (Figure 3-bottom right). The figure also illustrates that the method
tends to overestimate CIs for small values of internal noise in the [0, 1] range (see
also Figs. 7 and 8). This is typically the consequence of numerical errors for standard
error around βi estimates when training data involves too little variability (at the
boundary case of σn = 0, Python GLM estimates will fail numerically with a co-
called PerfectionSeparation error). While such situations are unlikely to occur with
experimental data, as typical internal noise value in human observers across a variety
of tasks is 1.3 (Neri, 2010), and even larger for patients (Adl Zarrabi et al., 2024), we
investigate a mitigation strategy that adds small quantities of jitter to response data,
i.e. randomly inverting a small percentage of binary responses before fitting the GLM.

Because the procedure provides a linear correlate of internal noise, but empirically
does not have unitary slope (Figure 3-bottom left), a final step is to rescale σ̂n using a
linear model (ordinary least-square regression) σn ∼ σ̂n+n trials trained on simulated
data for a range of observers with known internal noise values and experiments with
various n trials. The model can then be saved and reused on empirical estimates of
σ̂n (see Section Methods for details).

In sum, the method provides a direct model-based way to estimate internal noise
on non double-pass data via the proxy of normalized, trial-scaled confidence intervals
around GLM weights. The procedure involves a number of design parameters, namely
the aggregation function over multiple ˆCIi, the amount of jitter, and the GLM link
function (logit/probit). In the following, we evaluate these design choices against sim-
ulated data, and provide a recommendation for the parameters that provide the best
estimates.
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Fig. 3 GLM kernel estimate and normalized confidence intervals as a function of internal
noise and number of trials, illustrated on simulated data. Top: The GLM (probit) can
accurately recover the shape of the true kernel of an observer. The 95% confidence interval (CI) around
each estimated feature weight is shown. CI width varies across features. To summarize uncertainty in
a single value, we focus on the feature with the strongest weight and extract its CI width (referred to

as the argmax aggregation method). Bottom left: Estimated values of ĈI increase with increasing

internal noise, as expected. However, ĈI also depends non-linearly on the experiment’s number of
trials: more trials result in lower ĈIs. Bottom right: After adjusting for the number of trials by
multiplying the CI width by the square root of n, a linear relationship emerges between internal noise
and adjusted CI.

3 Methods

3.1 Simulation toolbox

To evaluate the methods, we developed an open-source Python/R toolbox (PALIN)
that allows simulating linear observers whose decision-making processes follow the
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formulation described in Equation 4. The toolbox enables the flexible simulation of
reverse-correlation experiments by varying key parameters such as internal noise σn,
decision bias b, and the observer kernel k. It also allows control over the level of
external noise, defined as the standard deviation of the Gaussian distribution from
which each stimulus is drawn. Users can specify the number of stimulus dimensions
and select from different experimental designs, including single-pass and double-pass.
The toolbox also supports different stimulus presentation formats, such as 1AFC and
2AFC tasks. The toolbox is implemented in both the Python and R programming
languages, and available open-source at https://github.com/neuro-team-femto/palin.

Using PALIN, we implemented the classical double-pass procedure to estimate
observer internal noise, as well as the three Intercept, Accuracy and GLM methods
described above. To evaluate each method, we simulate a range of linear observers with
known, true internal values, let them encounter simulated experiments with varying
numbers of trials, and compare each method’s capacity to recover the true parameters.
The process has inherent stochasticity, both in the observers (generated with random
kernels), experiments (generated with random trials), and decisions (generated with
random internal noise realization across trials). To account for this, we apply each
method over a number of independent runs, and report average measures of accuracy
and, when relevant, confidence intervals over runs and parameter settings. We describe
below the parameters of each simulation.

3.2 Evaluation of Intercept design parameters

The implementation of the Intercept method (Section 2.2) involves several design
parameters, which we evaluated against each other before choosing the best candidate
for comparison with other methods.

First, we evaluated the impact of how many bins are used to discretize trial-
pair distances, in both the poynomial and GLM fitting methods. To do so, we ran
computer simulations of ideal observers encountering simulated double-pass experi-
ments (n=1000 random trials, repeated n=1000 trials) for a range of observer internal
noise values ([0, 5]). We then extracted both estimations of probability of agreement
(p̂agree) over the 1000 repeated trials using the double-pass method (Section 2.1),
and estimations of p̂agree over the first non-repeated 1000 trials using the Intercept
method. We compared 24 variants of the Intercept method (12 number of bins in
{10, 50, 100, 200, 300, 400, 500, 1000, 2000, 3000, 5000, 10000}, 2 fitting methods: poly-
nomial or GLM). For each parameter combination, we compared the evolution of
estimated Intercept p̂agree against internal noise against the estimated Double-pass
p̂agree, taken as a baseline, using the root-mean-square error (RMSE). To alleviate
stochasticity due to internal noise, each combination of parameters (observer internal
noise, number of bin, fitting method) was simulated 10 times. RMSE was computed
on the average p̂agree across these 10 runs.

Second, we selected the number of bins that lead to the minimal RMSE value of
p̂agree against internal noise for both polynomial and GLM fitting methods, and com-
pared the performance of this optimal number of bins to variants of the Intercept
method that did not use any binning (i.e., fitted intercept to the complete number
of trial pairs). To do so, we ran another 10 runs of 1000-trial double-pass simulations
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for a range of observers with internal noise in [0, 5], comparing double-pass estima-
tions p̂agree on 1000 repeated trials and Intercept estimations p̂agree for 4 variants
(binned/non-binned, polynomial/GLM). We evaluated Intercept variants on the basis
of their RMSE to double-pass p̂agree. The variant with minimal RMSE was kept for
later comparison against other methods (see Section 3.5 below).

3.3 Evaluation of Accuracy design parameters

The design parameters for the Accuracy method (section 2.3) include, first, which
subsets of trials to use when computing accuracy (all trials, only hits, or only correct
rejections) and, second, whether accuracy should be weighted by activation magnitude.

To evaluate these design parameters, we ran simulations of observers performing
n = 1000 trials simple-pass experiment (no repeated trials) across a range of inter-
nal noise values([0, 5]). Observer kernels used for computing accuracy were estimated
as if in real experimental data using the classical classification image method, which
computed the average of stimuli chosen as one response option and subtracting the
average of stimuli chosen as the other option (Murray, 2011). A total of six configu-
rations were tested; three different trial masks (all trials, hits, CRs) crossed with two
weighting schemes (weighted vs unweighted). Each simulation was repeated 10 times
to average out variability. The Accuracy variant with the lowest average RMSE to
double-pass p̂agree was selected for subsequent comparisons with other methods (see
Section 3.5 below).

3.4 Evaluation of GLM-method design parameters

The GLM method (section 2.4) involves several design variables, including the
choice of aggregation function (min, max, mean, median, and several “arg” statistics
(argmax, argmedian, argmin), the GLM link function (logit - log-odds, and probit

-inverse-Gaussian CDF), as well as the level of jitter used to mitigate small-noise
overestimation. Contrary to the preceding Intercept and Accuracy method, which esti-
mates a proxy of p̂agree which is then subjected to a lookup table, the GLM method
provides a direct estimate σ̂n of internal noise (corrected for slope with a pretrained
linear regression, see Section 2.4).

We first evaluated the influence of jitter level on the method’s evaluation of internal
noise. To do so, we ran computer simulations of ideal observers encountering simulated
single-pass experiments (n = 1000 random trials) for a range of observer internal noise
values ([0, 5]). We then extracted estimations of internal noise with GLM methods
computed over a range of jitter values {1%, 2%, 5%, 10%, 15%, 20%} and with fixed
aggregation mode (argmax) and link (logit). For each configuration, we then com-
puted the averaged estimated internal noise value over 10 runs. We compared jitter
variants on the basis of their RMSE to the first diagonal (corresponding to true inter-
nal noise values). The jitter value with minimal RMSE was kept for later comparison
against other variants.

Second, we compared variants across aggregation mode and link function choices,
while fixing jitter at its optimal value. Over a large range of simulation parameters,
aggregation modes max, mean and argmin led to missing values in the estimation
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of confidence intervals and were discarded from the comparison. For the remaining
8 configurations (argmax,argmedian,median and min; link logit and probit), we
let ideal observers with internal noise values [0, 5] encounter simulated single-pass
experiments (n = 1000 random trials), and computed GLM internal noise estimates
over 10 runs. As before, we compared variants on the basis of RMSE to the first
diagonal. The GLM variant with the lowest average RMSE was selected for subsequent
comparisons with other methods (see Section 3.5 below).

In both evaluations, we used linear regression models to correct for non-unitary
slope in the relation between σ̂n and true internal noise (see section 2.4). To ensure
a fair comparison of all simulation settings, we trained a separate model for every
combination of aggregation mode and link function, and used that model for all jitter
values. Each model was estimated using simulations of observers with internal noise
∈ [0, 10], single-pass experiments with a number of trials ∈ [100, 2000] and fitted over
10 independent runs.

3.5 Comparison of internal noise estimations across methods

Finally, we compared the optimal variants of each method over their capacity to
estimate true internal noise. To do so, we trained separate lookup models to convert
p̂agree estimates from each of the three consistency methods (double-pass, intercept,
accuracy). The models were estimated using simulations of observers with true internal
noise ∈ [0, 10] and bias ∈ [−5, 5], encountering single- (Intercept, Accuracy) or double-
pass (Double-pass) experiments with n = 1000 trials, and averaged over 10 runs.
GLM estimates of internal noise σ̂n were computed using the same settings of linear
regression as above.

First, we compared methods on their capacity to retrieve true internal noise values,
for a range of internal noise, in a typical n = 1000 trial experiment. To do so, we
let zero-bias, ideal observers with internal noise values ∈ [0, 5] encounter simulated
single- (n = 1000 random trials) and double-pass (n = 500 random trials + n = 500
repeated) experiments, and computed internal noise estimates over 10 runs. For a
fair comparison, Double-pass methods were estimated on experiments with the same
total number of trials as the other 3 methods, i.e., 500 repeated trials vs 1000 single-
pass trials. We then compared variants on the basis of RMSE to the first diagonal,
corresponding to true internal noise values.

Second, we investigated how the precision of the methods depended on the number
of experimental trials, in particular for shorter experiments with n < 1000 trials. We
let zero-bias, ideal observers with internal noise values ∈ [0, 5] encounter single- and
double-pass experiments with number of trials ∈ [100, 1000]. For each number of trials,
we estimated internal noise, computed the absolute relative error compared to the
true value, and averaged it over the range of internal noise values.
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4 Results

4.1 Evaluation of Intercept design parameters

First, we evaluated the impact of how many bins are used to discretize trial-pair
distances, in both the poynomial and GLM fitting methods, using the criteria of RMS
error to the traditional souble-Pass estimation of probability of agreement. Both fitting
methods reached their minimum RMSE around 100 bins, with no performance gain
observed beyond that point (Figure4).

Then, we compared the performance of binned variants with this optimal number
(100) to variants of the method that did not use any binning, for both fitting methods.
The lowest RMSE (0.014) was achieved with GLM fitting and no binning, compared to
0.033 for the best polynomial configuration with binning (Fig. 5. GLM fitting without
binning provided more accurate p̂agree estimates at higher levels of internal noise (>1),
but tended to underestimate the baseline double-pass p̂agree at low internal noise.
Conversely, polynomial fitting without binning performed better at lower internal noise
levels (<1), but underestimated the double-pass p̂agree at large internal noise.

In the following, we therefore retain the unbinned GLM variant of the Intercept
method as optimal for comparison with the other methods (Section 4.4, below).

Fig. 4 Influence of number of bins used to estimate the probability of agreement using
the Intercept method. Trial-pair distances from simulated experiments were discretized into 10 to
10,000 bins, before being fitted with a polynomial (blue) or GLM (orange). The intercept of the fitted
curve was compared to the double-pass estimate of probabiliy of agreement across a range of internal
noise values using the root-mean square error (RMSE) metric. 95% confidence intervals computed
across 10 independent runs of the same simulation settings.
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Fig. 5 Estimated probability of agreement over a range of internal noise values, across
binning and fitting procedure variants of the Intercept method. Left: Comparison of 100-
bins (solid blue) and non-binning (dashed blue) estimations over simulated data for the polynomial
fitting variant. Right: Comparison of 100-bins (solid blue) and non-binning (dashed blue) estimation
over simulated data for the GLM fitting variant. Solid black curve in both panels mark the double-
pass estimate of p̂agree over the same data. 95% confidence intervals computed across 10 independent
runs of the same simulation settings.

4.2 Evaluation of Accuracy design parameters

We evaluated the Accuracy estimate p̂agree over three different trial masks (all trials,
hits, CRs) and two weighting schemes (weighted vs unweighted). The method produced
significantly higher estimates of p̂agree than the double-Pass groundtruth (Fig.6), with
trial weighting generally produced higher estimates than unweighted versions. The
lowest RMSE (0.311) was obtained with the all-trials, unweighted configuration, with
no clear difference from the hit and CR unweighted variants.

While the method clearly does not produce estimates on the same scale as
double-pass p̂agree (compare with Intercept, above), it still provides a proxy with a
monotonous relation to the double-pass estimate, and in quasi-linear relation to the
underlying internal noise. We therefore retain both all-trial variants of the method
(weighted, and non weighted) in the following comparison, by using specific lookup
table converting these two estimates to internal noise.
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Fig. 6 Estimated probability of agreement across internal noise levels for three different
trial masks (all trials, hits, CRs) and two weighting schemes (weighted vs unweighted)
of the Accuracy method. Solid lines correspond to trial-weighted conditions (all trials, hit trials,
and correct rejections), while dashed lines represent their unweighted counterparts. The black curve
indicates the baseline p̂agree values obtained from the double-pass method. 95% confidence intervals
computed across 10 independent runs of the same simulation settings.

4.3 Evaluation of GLM-method design parameters

We first evaluated the influence of jitter level on the GLM method’s evaluation of
internal noise σ̂n, with fixed aggregation mode (argmax) and link function (logit). As
expected, increasing jitter had a noticeable mitigation influence on the overestimation
of internal noise for small noises (RMSE for internal noise ¡ 1: jitter 10%: 0.70, 15%:
0.74, jitter 1%: 1.89, jitter 2%: 1.37), but also decreased the quality of estimation for
large internal noise (RMSE over all σn: jitter 10%: 1.20, 15%: 1.42, jitter 1%: 1.09,
jitter 2%: 0.93), see Fig. 7. The best RMSE (0.93) was achieved for 2% jitter.

Next, we compared variants across aggregation modes
(argmax,argmedian,median,min) and link function choices (logit,probit), while
fixing jitter at its optimal 2% value. Aggregation mode had a larger effect than link
function (Fig. 8), with argmax and min achieving comparable performance regardless
of link function (argmax-probit:RMSE 0.90; argmax-logit: 0.93; min-probit: 1.00,
min-logit: 1.03).

In the following, we therefore retain as optimal both the argmax and min variants,
with probit and 2% jitter.
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Fig. 7 Estimated internal noise for different jittered variants of the GLM method, across
a range of true simulated internal noise values. Dashed line marks the first diagonal (1:1
estimation). 95% confidence intervals across 10 independent runs of the same simulation settings.

Fig. 8 Estimated internal noise for different aggregation modes and link function vari-
ants of the GLM method, across a range of true simulated internal noise values. Left:
logit estimations. Right: probit estimations. Dashed line marks the first diagonal (1:1 estimation).
95% confidence intervals across 10 independent runs of the same simulation settings.
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4.4 Comparison of internal noise estimations across methods

We then compared the optimal variant of each method (Intercept: GLM, no binning;
Accuracy: all trials, weighted and non-weighted; GLM: 2% jitter, argmax/min, pro-
bit) against each other and against the double-pass method, over their capacity to
estimate true internal noise for simulated experiments of n = 1000 trials. By comput-
ing the relative error (in % of internal noise) at n = 1000 trials (Fig 9 -green) shows
the estimated internal noise against the true internal noise across 100, 600, and 1000
trials, both the Intercept (RE:23%) and Accuracy (RE:25%) methods provided bet-
ter estimates than the traditional double-pass method (RE:33%). The GLM method
(RE:38%) was less accurate as double-pass, but mostly because of its overestimation
of low internal noise values. When restricted to σn >1, GLM was more accurate than
double-pass (RE:19%), and in fact both other methods. Fig 9 shows the estimated
internal noise against the true internal noise across 100, 600, and 1000 trials, with
dashed lines indicating ±30% relative error margins around the diagonal.

Fig. 9 Estimation accuracy of internal noise across methods and trial counts Each panel
shows the estimated internal noise as a function of true internal noise for all four methods: (left-to-
right) Double pass, GLM, Intercept and Accuracy across three trial counts (100, 600, 1000). Solid lines
represent the estimated values across simulations. The dashed diagonal represents perfect estimation,
while outer lines indicate ±30% error margins. Estimation accuracy improves with more trials, and
both the Accuracy and Intercept methods outperform the traditional double-pass in terms of relative
error in each amount of trial.

Finally, we investigated how the precision of the methods depended on the num-
ber of experimental trials based on the relative error (in % of internal noise) over a
range of internal noise values in simulated experiments ranging from 100 to 10,000 tri-
als (Fig. 10). The ordering of methods seen at n=1000 was preserved over all range of
experiments, with Intercept and Accuracy methods consistently reaching better accu-
racy than double pass. Figure 10 shows that The Double-Pass method has the highest
error among all methods up to 1000 trials, but its accuracy improves beyond this point
and eventually reaches the same performance level (30% error) as the Accuracy-based
method around 10,000 trials. Due to computational constraints (the number of trial
pairs increasing exponentionally with n), the Intercept method was only evaluated up
to 1000 trials. The GLMmethod, while showing the highest error overall, mainly due to
overestimating low internal noise values, performs best when the analysis is restricted
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to internal noise levels >1, outperforming (RE: 19%) all other methods in that range.
At low/very-low number of trials (ex. n = 100 single-pass, or n = 50 repeated trials,
as sometimes used with patients - Adl Zarrabi et al. (2024)), the double-pass method
evaluates with an unimpressive 48% relative error ([0.8−1.8] around the typical health-
participant estimate of 1.3 - Neri (2010)), while the best method (Accuracy) achieves
an error of 30%. Error rates below 20% are reached as early as 600 single-pass trials,
using the GLM method under the assumption that σn > 1.

Fig. 10 Relative error of internal noise estimation across methods and trial counts [100,
10000] in log scale. Intercept (Intercept glm) and Accuracy ( Distance not weighted) show con-
sistently lower error than Double pass across all trials counted up to 1000. While GLM probit aggmin

overestimates internal noise at low levels, but it performs best amoung all methods when the noise
level is restricted to σn >1.

5 Discussion

While one of the important methodological interests of data-driven reverse-correlation
experiments is to allow estimating internal noise, the dominant strategy to do so,
double-pass, is plagued with important practical limitations. In this work, we intro-
duced and evaluated 3 simple alternative analytical techniques (Intercept, Accuracy
and GLM) to estimate internal noise from data-driven experiments in the absence
of double-pass measurements. Using computer simulations, we showed that the three
techniques consistently outperform double-pass estimation for experiments with low
number of trials (<1000), often more than halving percentage error.

The first method, Intercept, provides a heuristic to estimate the double-pass prob-
ability of agreement by extrapolating the agreement of pairs of imperfectly repeated
trials over the single-pass experiment. GLM fitting with raw binary agreements pro-
vided the best agreement with double-pass estimates of probability of agreement,

21

Chapter 6: Three new methods to estimate internal noise in the absence of
double-pass measurements 117



notably for larger levels of internal noise. The second method, Accuracy, estimates a
proxy of pagree based on the observer’s agreement with an ideal observer over the same
data. The version without trial weighting achieves better performance with no clear
difference between unweighted variants of the hit and CR trial masks. Both methods
suggest that information about consistency can be extracted from trial and response
variability in single-trial data, without requiring the availability of double-pass data.
This is important because, in typical experiments, single-pass trials are more numer-
ous than double-pass trials, which typically represent a more restricted set, so there
exists a compromise between the accuracy of double-pass estimation of internal noise,
and single-pass estimation of kernel. By capitalizing on single-trial trials to estimate
pagree, the Intercept and Accuracy method allow avoiding this compromise.

The third method, GLM, is a model-based approach that estimates internal noise
as a function of normalized confidence interval around GLM kernel weights. Among all
combinations, the argmax and min showed the best performance when using 2% jitter,
and the difference between the logit and probit link functions was minimal. By pro-
viding both kernel and internal noise estimates from the same model, the GLM model
provides a principled way to analyse data-driven results and, as the other methods,
allow to capitalize on more numerous single-pass trials without requiring double-pass
data. Compared to Intercept and Accuracy, however, the GLM method suffers from
poor (over-estimated) estimates of internal noise at low levels (σn < 1) and low n trials,
because of the difficulty to estimate confidence intervals with over-separated train-
ing data. This makes the method more appropriate for experimental contexts where
participants are expected to have moderate to large levels of σ̂n, i.e. for providing a
conservative estimate of patients vs controls.

To evaluate the efficiency of optimal variant of each method, we compared them
against each other by the varying number of trials, and assessed their ability to esti-
mate true internal noise. Both the Intercept and Accuracy methods showed the lowest
relative error (in % of internal noise), followed by GLM, with all three outperforming
the Double-pass method up to 1000 trials. As the number of trials increased up to
10000, estimation error decreased (30% error) for all methods. Notably, when the GLM
method was filtered to include only internal noise values greater than 1, it became
the most accurate method, reaching the lowest error of 19%. These results suggest
that double-pass estimation is almost entirely inappropriate for all experiments with
n < 1000 trials, but that such experiments can be analysed with methods such as
Intercept, Accuracy or, in situations where internal noise can be assumed to be > 1,
GLM.

One limitation of the present study is that we explored method accuracy over a
range of true internal noise values, but did not explicitly examine the effect of response
bias b. While b is explicitely accounted for in the lookup tables (based on the proxy of
pfirst, we assumed b = 0 in most simulations. It is possible that some method are more
robust to bias than others. It is also possible that a direct model-based estimate of bias
can be extracted from a GLM model, e.g. via the proxy of the GLM intercept (Murray,
2011). In future work, we aim to investigate how bias can be estimated directly and
whether it influences the robustness of internal noise estimation in direct models.
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Another limitation lies in the use of a lookup-based backward models to convert
p̂agree estimates into σ̂n. Lookup tables are impractical, because they requires training
a separate model for each estimation method. They are also intrinsically limited in
precision due to the fixed search grid (fixed here to 0.1 step size, i.e. a 10% RE at
σn = 1). Because the analytical relation between pagree and σn is non-linear (Appendix
A), lookup search are also associated with saturation effects at large σn values, where
the nearest grid point typically underestimates the true σn. While lookup tables are
the (oft, undocumented) default approach in the literature (Goupil et al., 2021; Neri,
2010; Ponsot et al., 2018), it is possible that optimization-based approaches (i.e. with
no fixed grid) could provide more accurate parameter estimation, and that these could
be combined with the present methods for even better estimates.

Finally, a major limitation of double-pass design is their assumption of stationary
noise throughout the experiment. Because the new methods of Accuracy, Intercept
and GLM do not rely on the availability of repeated trials, they offer the possibil-
ity to estimate internal noise continuously over time, and empirically test whether
this assumption is correct. In the literature, no prior study has explored this dynamic
aspect of internal noise. As research in cognitive science increasingly focuses on
dynamic and adaptive task behavior (Li, Shi, Li, & Collins, 2024; Sergent et al., 2021),
being able to track internal noise across time could reveal new insights. For instance,
experiments using a block-based or mixed design of template matching could benefit
from estimating internal noise within each block to explore the temporal evolution of
internal noise.

All in all, with double-pass errors in the [30% − 50%] range, this may call for a
re/analysis of the published literature where double-pass internal noise estimates were
calculated with small number of trials, e.g. in the case of fatigable patients (Adl Zarrabi
et al., 2024) or online participants. In studies investigating internal noise and its link
to individual traits (e.g., autistic characteristics - Merchie et al. (2024) )the lack of
observed correlation may partly arise from the imprecision of the traditional double-
pass method. The PALIN open-source framework, available both in Python and R,
provides all the methods mentioned above that can be applied to reanalyze such
datasets, allowing direct comparison between estimation methods.

Declarations

Author contribution. JJA, AAZ, LN and MV, contributed to the conception and
design of the study. JJA and MV provided the concept for the Intercept method, LN
for the Accuracy method and AAZ for the GLM method. LN provided the concept
for the analytical solution of Appendix A. JJA and AAZ wrote the code of the tool in
Python and LN wrote the code in R. AAZ and JJA produced the figures and drafted
the manuscript, with contributions from LN and MV.

Funding. This work was supported by grant from Fondation pour l’Audition (FPA
RD 2021-12).

Code availability. All simulations are done by PALIN toolbox, available in Python
and R language, v2.0.0 available at https://github.com/neuro-team-femto/palin.

23

Chapter 6: Three new methods to estimate internal noise in the absence of
double-pass measurements 119



Conflicts of interest/Competing interests. No author of this work has a direct
or indirect confict of interest related to the publication of this work.

Ethics approval and consent to participate. Not applicable.

Consent to publication. Not applicable.

24

120 Section 6.3: Study



Appendix A Semi-analytical solution for the
generative (forward) SDT model

The SDT model assumes that an observer makes a choice based on the noisy internal
representations of the stimuli. The internal decision variable is modelled as:

X = si + σir (A1)

where: si ∼ N (0, 1) represents the difference between stimuli in the two intervals
i and σir ∼ N (0, σ2) is the internal noise added independently to each repetition r.
The observer chooses stimulus 1 if:

si + σir > c (A2)

where c is the response bias. Thus, the probability of choosing stimulus 1 (first
interval) is:

Pr
first

= Pr(si + σir > c) (A3)

Since both si and σir are normally distributed, their sum follows:

si + σir ∼ N (0, 1 + σ2) (A4)

Rewriting the probability:

Pr
first

= Pr

(
si + σir√
1 + σ2

>
c√

1 + σ2

)
(A5)

Using the standard normal cumulative distribution function (CDF), Φ(x), we
obtain:

Pr
first

= 1− Φ

(
c√

1 + σ2

)
(A6)

Agreement occurs when an observer gives the same response in two independent
presentations of the same stimulus. The observer makes two independent decisions:

X1 = si + σi1, X2 = si + σi2 (A7)

where σi1, σi2 ∼ N (0, σ2) are independent samples of internal noise. Agreement
occurs if both repetitions yield the same choice:

(si + σi1 > c and si + σi2 > c) or (si + σi1 < c and si + σi2 < c) (A8)

The probability of choosing the first stimulus in a single trial is:

Pr
stim1

= 1− Φ

(
c− s√
1 + σ2

)
(A9)

The probability of choosing the second stimulus is:
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Pr
stim2

= Φ

(
c− s√
1 + σ2

)
(A10)

Thus, the average (expected) probability of agreement is obtained by integrating
over all possible s values:

Pr
agree

=

∫ ∞

−∞

[(
1− Φ

(
c− s

σ

))2

+Φ

(
c− s

σ

)2
]
ϕ(s)ds

= Es∼N (0,1)

[
Φ

(
s− c

σ

)2

+

(
1− Φ

(
s− c

σ

))2
] (A11)

where ϕ(s) is the standard normal density (PDF) of s:

ϕ(s) =
1√
2π

e−s2/2 (A12)

This integral does not have a closed-form solution, but can be approximated using
numerical methods (as implemented in the palin package). This solution highlights a
few key properties of the SDT model. Namely, if there is no internal noise (i.e., σ = 0),
agreement becomes deterministic:

Pr
agree

=

∫ ∞

−∞

[
I(s > c)2 + I(s < c)2

]
ϕ(s)ds = 1 (A13)

where I(·) is the indicator function. When there is no bias (i.e., c = 0), the decision
rule is symmetric, ensuring that Pragree depends only on σ.
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Joint estimation of perseverations and

reverse-correlation parameters with the

GLM-HMM model

As discussed in Chapter 5, the fact that stroke patients tend to perseverate disrupts both

the stimulus-response relation and response variability, leading to large estimation errors

in both kernel and noise. First, when patients perseverate for an important proportion of

an experiment, kernels estimated with the classification-image or GLM method (Chapter

3) are trying to infer a stimulus-response relation based on data which does not reflect

such a decision strategy. Second, if patients perseverate during one or both double-pass

blocks, the probability of agreement may be severely under- or over-estimated, leading to

internal noise estimates which do not have a direct relation with the patient’s perceptual

decision process.

One approach to detecting perseveration in behavioral responses is to only analyze

choice history, i.e., measure the tendency to repeat the same response across an arbi-

trary number of consecutive trials (e.g., 15) without considering whether the response
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was actually appropriate to the stimulus. While we used this approach to quantify the

impact of perseveration in a post-hoc analysis of the results of Chapter 4, it is likely to

both falsely label as perseverated streaks of trials which, by chance, genuinely warranted

similar responses and also miss shorter perseverations. At the same time, like internal

noise, perseverating episodes is not only a source of “estimation noise” that one wants

to mitigate but also a symptom of cognitive deficits after stroke. Detecting it accurately

(e.g., estimating a true probability of perseverating) may therefore provide crucial insights

into post-stroke cognitive impairments and potentially another candidate for biomarkers

that can help their diagnosis, prognosis or therapy.

In this chapter, we introduce a new method to conjointly estimate both linear-observer

parameters and perseverating episodes, using a joint model with two latent states (input-

output hidden Markov model, or GLM-HMM). We show that this model is able to recover

perseverating episodes by taking into account not only repeated responses but also stimuli-

response relations and to improve the accuracy of kernel and noise estimates across non-

perseverated episodes.

7.1 State of the art

7.1.1 Latent states in human decision-making

The assumption of a single-state decision process, as implied, e.g., by the linear-observer

model (Chapter 3), fails to capture the dynamical nature of human – and also non-human

animal – behaviour. A series of recent works have indeed demonstrated that human

cognition is influenced not only by external task demands (e.g., here, stimuli) but also

by unknown latent mental processes that change with time and may be only weakly

aligned with external task conditions. In Taghia et al. (2018) for instance, authors use

a technique akin to a hidden Markov model (Bayesian switching linear dynamical sys-

tems; BSDS) to identify brain states with stable spatiotemporal properties from fMRI

(functional magnetic resonance imaging) data and show that their occupancy rates dur-

ing a visual working-memory task correlate with performance. Similarly, recent work has
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attempted to identify mind wandering during repetitive decision tasks, using occasional

thought probes, and found that trials where participants reported to be off-task corre-

sponded to distinct brain dynamics (Sergent et al., 2021), and that these could be learnt

from stimulus-response patterns in a trial-per-trial basis (Zhang & Kool, 2024). In mice,

a recent influential paper has also shown that decision-making strategies comprise a single

‘engaged’ state, in which decisions relied heavily on the stimuli, and several biased states

in which errors frequently occurred (Ashwood et al., 2020).

The similarity of these observations with our problem of detecting perseveration in

reverse-correlation response data is striking: in a first modeling approximation, perse-

verating patients may be thought of as being in one of two states: an ‘engaged’ state

(per Ashwood et al. (2020)) where the linear-observer model applies with its kernel and

internal noise, and a ‘perseverating’ state, where the response is determined by the simple

rule of being equal to the previous response.

The investigation of time-varying, context-dependent, hidden states that translate ei-

ther in behavior or brain activity is a challenging computational problem because changes

in brain states can be induced by both external stimuli and latent factors, such as mo-

tivation, alertness, fatigue and momentary lapse in attention (Taghia et al., 2018). In

more recent work, the problem is redefined as the inference of a state-space model (SSM)

(Commandeur & Koopman, 2007), typically a partially observed Markov model. SSMs

have been applied, from their early use in the 1960s Kalman filter for spacecraft tracking

(Kalman, 1960), to their application in animal movement modeling (Patterson, Thomas,

Wilcox, Ovaskainen, & Matthiopoulos, 2008), and later in complex behavioral models

(Roy, Bak, Akrami, Brody, & Pillow, 2021) for capturing hidden cognitive and decision-

making processes.

At their core, SSMs consist of two modeling parts: (1) a process model, which captures

how the system evolves over time, and (2) an observation model, which maps observations

to hidden states, accounting for measurement noise and indirect observations. By decou-

pling these components, SSMs effectively handle observational errors and reveal latent

cognitive dynamics, making them particularly useful for behavioral and neural modeling.

In this work, we show that a particular kind of SSM, the GLM-HMM model (Gen-
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eralized linear model - Hidden Markov model), provides an elegant framework to both

infer the engaged and perseverant states, as well as the linear-observer parameters of the

former, which we have seen can be integrated in the format of a GLM (kernel: GLM

weights, Chapter 3; noise: weight confidence intervals, Chapter 6). In the following, we

first introduce the methodology of GLM-HMM models, then describe their application to

reverse correlation simulated data, and in Chapter 9 we apply it on clinical data.

7.1.2 The GLM-HMM model

7.1.2.1 The hidden Markov model (HMM)

The hidden Markov model (HMM) is a common formalization of the process model in

SSMs (Fahrmeir, Tutz, Fahrmeir, & Tutz, 2001). In an HMM, the system being modeled

is assumed to be a Markov process with discrete (i.e., hidden) states zt. In probability

theory, a Markov model is a stochastic model used to model randomly changing systems.

It is assumed that future states depend only on the current state and not on the events that

occurred before it. The observations may be discrete, yt ∈ {1,2, . . . ,Ny}, or continuous

and assumed to be generated from these latent states.

In more detail, an HMM consists of:

• The initial state distribution p(z1 = i) = πi.

• The transition model is noted as p(zt = j|zt−1 = i) = Aij showing how likely to

change from one latent state i to j. The diagonal of this matrix Aii shows the

percentage of staying in statezi.

• The observation model has emission probabilities, p(yt|zt = j) which specify how

observations yt are generated given the latent state zt. For continuous observations,

a Gaussian emission model (Xuan, Zhang, & Chai, 2001) is often used: p(yt|zt =

j) = N(yt;µj ,σ
2
j ) .

Since latent states are not directly observable, parameter estimation is performed

using the Expectation-Maximization (EM) algorithm (McLachlan & Krishnan, 2008),
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specifically the Baum-Welch algorithm (Sundaram, 2000), which iteratively refines the

model parameters by alternating between two steps:

• E-step (estimation): estimates the probability of being in each hidden state at every

point in time based on the observations. This is done using the Forward-Backward

Algorithm (Yu & Kobayashi, 2003), which calculates the posterior probabilities of

hidden states (probability distribution over the hidden states at a given time, given

the entire sequence of observed data up to that point).

• M-step (maximization): Using these probabilities, updates the model parameters,

including the transition matrix (how hidden states change over time) and the emis-

sion parameters (how hidden states affect the observations). The goal is to maximize

the likelihood of the observed data.

7.1.2.2 Input-output HMMs

The Input-Output HMM (IO-HMM) was first introduced by Bengio and Frasconi (1996)

and extends the classical HMM by allowing external inputs xt to influence both latent

state transitions and emissions. This is unlike standard HMMs, in which the distributions

of the output variables are conditioned solely on the states. The transition model is

made input-dependent in IO-HMM, p(zt = j|zt−1 = i,xt) and the observation model is

also conditioned on xt: p(yt|zt = j,xt). This modification allows latent state changes to

be influenced by contextual information, making IO-HMMs more flexible for modeling

stimulus-driven behaviors.

7.1.2.3 The Generalized Linear Model (GLM) HMM

The Generalized Linear Model Hidden Markov Model (GLM-HMM) extends the HMM by

incorporating external inputs xt into the observation model, which models observations as

a function of both latent states and input-dependent covariates (Ashwood, 2022). In the

GLM-HMM, the HMM governs the distribution over latent states, while a state-specific

GLM specifies the strategy of decision-making within each state. Unlike IO-HMMs, where
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latent state transitions are input-dependent, in GLM-HMMs, transitions remain Marko-

vian, while the observations yt depend on both latent states zt and external inputs, xt

making the GLM-HMM particularly useful for modeling state-dependent decision-making

processes.

In more detail, the GLM maps observations yt to a weighted combination of covariates

(typically stimulus, but also e.g., previous stimuli, previous responses, etc.) through a

sigmoidal function, modeling the probability of a binary decision. The probability of a

binary response yt in a given latent state zt is defined as:

p(yt = 1|xt, zt) = 1
1 + e−xt.wzt

= σ(xt.wzt). (7.1)

7.1.3 Training algorithms for the GLM-HMM

As in the classical HMM model, the parameters of the GLM-HMM are estimated using

the Expectation-Maximization (EM) algorithm. EM iteratively optimizes the parameters

by alternating between computing posterior probabilities of latent states (E-step) and

updating model parameters (M-step). Depending on the estimation method, we can

use either Maximum Likelihood Estimation (MLE) or Maximum A Posteriori (MAP)

Estimation (Dempster, Laird, & Rubin, 1977).

7.1.3.1 Maximum-Likelihood estimation (MLE)

MLE estimates the parameters by maximizing the likelihood of the observed data:

Θ̂ = argmax
Θ

P (y1:T |x1:T ,Θ) (7.2)

where Θ̂ represents the optimal parameter estimates based purely on observed data.

Since the latent states are unobserved, the EM algorithm is used to iteratively refine

the model parameters. It consists of two steps:

• E-Step: Using the Forward-Backward algorithm, we compute the posterior proba-

bility of each latent state:

γt,k = P (zt = k|y1:T ,x1:T ,Θ) (7.3)
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where γt,k represents the probability of being in latent state k at time t, the entire

sequence of observations and inputs.

Additionally, we compute the expected state transitions:

ξt,ij = P (zt = i,zt+1 = j|y1:T ,x1:T ,Θ) (7.4)

which represent the probability of transitioning from state i to state j.

• M-Step: Using the posterior estimates from the E-Step, we update the model pa-

rameters by maximizing the expected log-likelihood. The transition matrix A is

updated as:

Aij =
∑T −1

t=1 ξt,ij∑T −1
t=1 γt,i

(7.5)

ensuring that each row of the matrix represents valid transition probabilities sum-

ming to one. The GLM parameters wk are updated by maximizing the conditional

log-likelihood:

max
w

T∑
t=1

K∑
k=1

γt,k logP (yt|xt,wk) (7.6)

which is typically optimized numerically using gradient ascent, as no closed-form

solution exists for the optimal weights.

7.1.3.2 Maximum A Posteriori (MAP) Estimation

MAP extends MLE by incorporating prior distributions on the model parameters to reg-

ularize estimation. It maximizes the posterior probability:

Θ̂ = argmax
Θ

P (y1:T |x1:T ,Θ)P (Θ) (7.7)

where P (Θ) represents the prior distribution. This ensures that the estimated parameters

remain within reasonable ranges, especially when data are limited.

MAP follows the same EM procedure as MLE but with additional regularization from

prior distributions. As in MLE, in the E-step we compute the posterior probabilities of

the latent states and the expected transition probabilities. What is different here is the

M-step, which incorporates prior distributions to regularize parameter updates.
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• The transition matrix A is updated similarly to MLE but constrained by a Dirichlet

prior which ensures that transition probabilities remain non-negative and sum to

one:

P (A) = Dirichlet(A|α) (7.8)

• The GLM parameters wk are updated by maximizing the posterior probability:

max
w

T∑
t=1

K∑
k=1

γt,k logP (yt|xt,wk) + logP (wk) (7.9)

where the prior P (wk) is modeled as a Gaussian distribution:

P (w) = N (w|µ,σ2) (7.10)

MAP estimation is particularly beneficial when the dataset is limited, as it incorporates

prior knowledge to improve generalization and prevent overfitting.

7.2 Model development

To model perseveration, we propose to use a GLM-HMM model in which perseverating

patients may be thought of as being in one of two states: an ‘engaged’ state where

the linear-observer model applies with its kernel and internal noise and a ‘perseverating’

state, where the response is determined by the simple rule of being equal to the previous

response.

This method has already been applied to mice decision data, showing that mice dynam-

ically switch between an engaged state, where decisions rely on sensory input, and biased

states, where errors are more frequent (Ashwood et al., 2020). Incidentally, this study

contributed to the development of the SSM (State Space Model) library by Scott Linder-

man’s lab (Statistics Dept, Stanford University https://github.com/lindermanlab/

ssm), which I use in my analysis. In Ashwood et al. (2020), the authors aimed to deter-

mine the number of states that best explain movement-based decision-making in mice by

minimizing the log-likelihood across subjects. However here, unlike Ashwood et al. (2020),

https://github.com/lindermanlab/ssm
https://github.com/lindermanlab/ssm
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where state transitions were inferred from known correct responses, we do not have ground

truth for state switching or correct responses, which are undefined in reverse correlation

experiments. To overcome this limitation, we use the PALIN toolbox to simulate multiple

perseverating observers with known true states (either engaged or perseverating, with a

known probability of transition), allowing us to validate the switching algorithm.

Our GLM-HMM model takes as inputs the difference in features between manipulated

stimuli in each trial (as in GLM estimations of kernel, see Chapter 3) and an additional

covariate: the observer’s previous choice. In perseverating state, an observer’s response

at trial t is identical to their response at trial t − 1, and this choice is not based on the

stimulus representation. Conversely, in engaged state, their choice is influenced by the

stimulus and not (or not mostly) by their previous response. Our goal is to determine,

for each trial, whether the observer is in the engaged or perseverative state, providing a

state-based interpretation of decision-making behavior.

To fit the conditions of the reverse correlation experiment of Chapter 4, we set the

number of states to 2: engaged (ENG) and perseverating (PER), and set the number

of input dimensions/covariates to 8, including 7 stimulus-related features and 1 choice

history. The outputs were modeled as binary responses (first or second interval). In

terms of GLM weights, we would expect that, if correctly inferred from data, the GLM

corresponding to the engaged (ENG) state should have non-zero weights on the stimulus

features (corresponding to the linear-observer kernel, which can have zero weight on cer-

tain features if they are not used in the decision, e.g., the beginning of an interrogative

utterance that has less weight as seen in Chapter 4) and zero weight on the previous

response choice, while the GLM of the perseverating (PER) state should have zero weight

on the stimulus feature and unit weight (or, equivalently, one arbitrarily positive weight)

on the previous choice (Figure 7.1, Top-right). In terms of transition matrix, a GLM-

HMM trained from patient data will have four transition probabilities (a rank-2 matrix),

where diagonal terms (probability to stay engaged p22if engaged and probability to stay

perseverating p11 if perseverating) are expected to dominate, and non-diagonal (p12, p21)

elements govern transition behaviour (Figure 7.1, Bottom).
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Fig. 7.1 Per-state GLM weights and state transition structure in the GLM-HMM Top The
estimated GLM weights for each hidden state: the engaged (ENG) state (left, purple)
exhibits flexible weights across stimulus features and minimal influence from previous
choices, while the perseverative (PER) state (right, blue) demonstrates a dominant
weight on previous response and negligible weights on stimulus features. Bottom The
state transition matrix of the GLM-HMM, where p11 and p22 represent the probability
of remaining in the same state, and p12 and p21 denote switching between states.
Accurate inference of these parameters enables the model to capture dynamic switching
between engaged and perseverative behaviors during the task.

7.2.1 Training methods

7.2.1.1 Training with MLE

With Maximum Likelihood Estimation (MLE) with test training data, we consistently

observe that 2-state GLM-HMM models do not converge to clearly separated states and,

in particular, incorporate non-zero weights on choice history in both states. Since choice

history is often predictive of the current choice, the model naturally assigns weights to

this covariate in both states, even when one state (the engaged state) should ideally rely

solely on stimulus-driven decision-making. This issue arises because MLE does not enforce

state-specific constraints, allowing information from past choices to leak into both states

rather than being confined to the perseverative state alone.
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Fig. 7.2 Illustration of state switching in the GLM-HMM framework Each trial (t) presents
a stimulus characterized by several acoustic features (inputs X). At each time point,
the participant is in a latent state z, either engaged (ENG, purple) or perseverative
(PER, blue), which determines how the GLM relates the input to the response. State
transitions (arrows) can occur dynamically between trials, reflecting fluctuations in
cognitive engagement. The output Y is a sequence of choices; in the PER state, the
response typically repeats the previous trial’s choice

Additionally, MLE is prone to overfitting, capturing any correlation in the data that

increases likelihood, even if it does not reflect the true underlying cognitive states. With-

out a prior to guide the estimation, the model struggles to separate the engaged and

perseverative states properly, leading to a failure in state dissociation. Additionally, MLE

only seeks to maximize the likelihood of observed choices, which makes it susceptible to

local likelihood optima, where the optimization process gets stuck in suboptimal solutions.

This is particularly problematic when the dataset is limited in the number of trials.
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7.2.1.2 Training with MAP

To overcome these limitations, we used Maximum A Posteriori (MAP) estimation in

order to incorporate structured priors that guide the learning process and prevent state

ambiguity.

To optimize priors for both GLM weights by Gaussian priors and transition probabili-

ties by Dirichlet priors (Sethuraman, 1994), we designed a systematic validation approach

by simulating multiple perseverating observers in PALIN with a known ground truth of

state transitions. We used Bayesian optimization (Jones, Schonlau, and Welch (1998),

https://pypi.org/project/bayes-optim/, (Frazier, 2018)) to explore a broad set of

parameter values and identify those that best facilitate the separation of latent states.

Unlike grid search or random search, Bayesian Optimization is a sample-efficient method

for optimizing costly objective functions. It builds a probabilistic surrogate model to

approximate the objective and uses an acquisition function to balance exploration and

exploitation, efficiently guiding the search toward optimal hyperparameters.

For the GLM weights, priors were modelled using Gaussian distributions, where the

hyperparameters, mean µ and variance σ2, were optimized to balance flexibility and reg-

ularization in state-dependent parameter estimation. The transition probabilities were

controlled using a Dirichlet prior with an adjustable concentration parameter α, which

dictated the tendency of the model to remain in the same state or transition between

states.

The optimization process aimed to find the best combination of hyperparameters that

maximized the likelihood of the observed data while preventing overfitting. By iteratively

evaluating different prior configurations and updating the surrogate model, Bayesian Opti-

mization efficiently converged toward the best set of priors without the need for exhaustive

search.

To operationalize this approach, we developed a pipeline where multiple simulated

datasets, each representing a perseverating observer generated via the PALIN framework

(see 5.1.4), served as testbeds for prior optimization. Each dataset comprised simulated

responses, input stimuli, and the ground-truth sequence of latent states (engaged or per-

https://pypi.org/project/bayes-optim/
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severative).

For each simulation, we systematically varied the prior means and variances for the

GLM weights in both states, as well as the alpha parameter of the Dirichlet prior gov-

erning state transitions. The GLM-HMM was configured with two latent states and eight

input features and was fit to the simulated data using Expectation-Maximization with

MAP estimation. Specifically, for the engaged state, the prior mean and variance were

assigned to the weights corresponding to all stimulus input features, while the weight

on the previous choice input was fixed at zero. In contrast, for the perseverative state,

the prior mean and variance were applied to the weight on the previous choice input,

with all other weights set to zero. This parameterization is reflected in the prior struc-

ture: prior_means = [(0, mean_value_1), (mean_value_2, 0)] and prior_sigmas = [(0.01,

sigma_value_1), (sigma_value_2, 0.01)], where mean_value_1 and sigma_value_1 specify

the prior for the previous choice input in the perseverative state, and mean_value_2 and

sigma_value_2 specify the prior for the stimulus features in the engaged state.

The search for optimal priors by Bayesian optimization, iteratively proposed new

sets of hyperparameters (means: 0–2, variances: 1–5, alpha: 1–3) and refit the model,

minimizing the root mean square error (RMSE) between the inferred and true latent

states. RMSE was calculated both globally and for each state separately, providing a

sensitive measure of state recovery accuracy.

7.2.2 Measuring goodness of fit

The accuracy of GLM-HMM parameter estimation was evaluated throughout the prior

optimization process and subsequent validation (see Section 7.3). For each fitted model,

we computed posterior state probabilities and compared the most likely predicted state

to the true state at each trial, using RMSE as our primary metric. This was calculated

for all states combined and separately for engaged and perseverative states. In addition,

we recorded the model’s log-likelihood to assess overall fit to the observed data.

Figure 7.3 illustrates the results of GLM-HMM prior optimization for two simulated

perseverating observers, showing how different aspects of model fitting and state recovery
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are visualized across the panels.

In the top left panel for each observer, the plot depicts the posterior probability of

being in the engaged state (green) and the perseverative state (orange) at each trial. These

dynamic probabilities are overlaid with the true latent state sequence (gray dashed line),

allowing a direct visual comparison of model inference versus ground truth throughout

the session.

The top right panel displays the extracted GLM weights for each state, plotted across

all eight input features. The engaged state weights are shown in green (right y-axis),

while the perseverative state weights are plotted in orange (left y-axis). The x-axis labels

the input features: the first seven represent stimulus features, and the eighth corresponds

to the previous choice input. For the engaged state, this last weight remains at zero

(reflecting no influence of previous response), whereas for the perseverative state, this

weight varies and is typically non-zero, capturing the habitual response repetition char-

acteristic of perseveration. The panel titles report the correlation between the estimated

and true kernels, as well as with the one-state GLM-HMM kernel for direct quantitative

comparison.

In the bottom left panel, showing a comparison of the kernels. The blue line represents

the true internal kernel (i.e., the simulated “ground-truth” perceptual weights). The red

line shows the kernel estimated by a one-state GLM-HMM, which combines all trials

without accounting for state switching. The green line depicts the engaged-state kernel

estimated by the two-state GLM-HMM, derived specifically from trials inferred to be in

the engaged state. Here, the x-axis covers the seven stimulus feature indices, showing how

well each modeling approach captures the true perceptual representation.

The bottom right panel presents the recovered transition matrices for each observer,

summarizing the estimated probabilities of remaining in or switching between the en-

gaged and perseverative states. These matrices quantify the model’s ability to learn the

underlying dynamics of state persistence and transition.

For each observer, details of the best-fitting priors and performance are indicated

above the plots. For instance, in the first (top) observer, the optimal priors included a

prior mean 1 of 1.44, prior mean 2 of 4.62, prior sigma 1 of 4.09, prior sigma 2 of 2.62, and



Chapter 7: Joint estimation of perseverations and reverse-correlation parameters with
the GLM-HMM model 141

a prior alpha of 1.00. This configuration achieved a log-likelihood of −92.34 and a total

RMSE of 0.30, with particularly accurate recovery for the engaged state (RMSE = 0.26).

Fig. 7.3 GLM-HMM prior optimization on simulated perseverating observers Top left: Pos-
terior state probabilities (green: engaged, orange: perseverative) with the true latent
state (gray). Top right: State-specific GLM weights across eight input features (stim-
ulus features and previous choice input), with their correlations to the true kernel
and single-state GLM-HMM estimate. Bottom left: Comparison of true kernel (blue),
engaged-state kernel from GLM-HMM (green), and kernel from single-state GLM-
HMM (red). Bottom right: Recovered transition matrices for each simulated observer.

7.3 Model validation

To evaluate the effectiveness of the selected priors in minimising RMSE, we assess how

accurately the model recovers the true latent states in a simulated reverse correlation
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experiment with perseverating observers. By comparing the inferred states to the known

ground truth, we quantify the extent of estimation errors and determine the reliability of

the optimized priors.

7.3.1 RMSE of states

Figure 7.4 illustrates that as the true probability of staying in the perseverative state

increases, the model becomes more accurate in predicting perseveration. However, RMSE

increases for the engaged state, indicating that the model struggles to correctly identify

engaged trials when perseveration dominates. When a significant proportion of trials

(around 40%) belong to the engaged state, the model finds it difficult to transition back

to engaged once it has classified a sequence as perseverative. However, increasing the

number of trials improves overall performance. Ultimately, the total RMSE is primarily

driven by the poor fit of the engaged state rather than errors in the perseverative state

estimation.

Fig. 7.4 Root mean square error (RMSE) of state inference as a function of the probability of
staying in the perseverative state (β), for different trial counts The left panel shows
total RMSE across both states, the middle panel shows RMSE for the perseverative
state, and the right panel shows the engaged state. Increasing β improves detection
of perseveration but reduces accuracy for engaged states, especially when trial counts
are low.
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7.3.2 Precision of kernel in engaged state

Next, we conducted simulations to compare the effectiveness of different methods under

varying levels of internal noise and in the presence of a perseverating observer, given

their engaged kernel. Both the Classification Image (CI) method and Generalized Linear

Model (GLM) estimate the kernel by including possibly perseverated trials. In contrast,

the GLM-Hidden Markov Model (GLM-HMM) explicitly identifies perseverated trials and

estimates the kernel only for engaged trials. Conversely, when the total number of trials is

limited (e.g., 150 trials in the experimental setup of Chapter 4), GLM-HMM may discard

a significant portion of data, potentially impacting kernel estimation. Figure 7.5 confirms

these predictions.

Unlike CI and GLM, GLM-HMM maintains a slower decline in kernel correlation,

indicating that it preserves kernel precision in engaged trials over a broader range of

perseveration probabilities (β). At very high perseveration probabilities, GLM-HMM

even surpasses the other two methods in kernel accuracy, likely due to its ability to better

isolate engaged trials from perseverative noise.

When both perseveration and internal noise increase, GLM-HMM becomes more sen-

sitive in detecting and excluding perseverative trials from the engaged state. This results

in a divergence between the estimated engaged-state kernel and the kernel computed over

all trials when the perseveration probability exceeds 0.6. As the number of trials increases,

the effect of trial exclusion diminishes, allowing GLM-HMM to achieve the same kernel

precision as the other two models. Across all methods, kernel precision declines as internal

noise levels increase.

7.3.3 Precision of internal noise in engaged state

Finally, we conducted another simulation to estimate internal noise, comparing two meth-

ods: the Double-Pass method, which estimates noise across repeated trials, and the

GLM-HMM method, which estimates noise in engaged trials using the confidence-interval

method introduced in Chapter 6.

Our observations (Figure 7.6) indicate that when the number of trials is limited (e.g.,
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Fig. 7.5 Effect of perseveration and internal noise on kernel estimation accuracy Each panel
plots kernel correlation for three methods (Classification Image, GLM, GLM-HMM)
across different perseveration probabilities (β), for three levels of internal noise (σz =
1.5,3,4.5). The top row covers a wide range of perseveration probabilities (0.01 to
0.99), the middle row focuses on high perseveration (0.65 to 0.95), and the bottom
row zooms in on very high perseveration (0.85 to 0.95). As perseveration and internal
noise increase, GLM-HMM preserves kernel accuracy in the engaged state better than
the other methods, especially at high perseveration probabilities.

150 trials) and perseveration is low, both methods perform similarly, with neither show-

ing a clear advantage. However, as perseveration increases (e.g., at a probability of 0.6),

the GLM-HMM method provides a more accurate estimation of internal noise, while the

Double-Pass method remains relatively unchanged. At very high levels of perseveration,

the Double-Pass method struggles to distinguish different noise levels, leading to under-

estimation. In contrast, the GLM-HMM method remains sensitive to noise variations,

suggesting it is better suited for cases where perseveration is a significant factor.

Additionally, as the number of trials increases, the difference between the two methods
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becomes even more pronounced. The GLM-HMM method continues to refine its internal

noise estimation, while the Double-Pass estimates remain stable but do not improve in

distinguishing noise levels, further emphasizing the advantage of GLM-HMM in scenarios

with high perseveration and larger datasets.

Fig. 7.6 Internal noise estimation in engaged trials using Double-Pass and GLM-HMM meth-
ods Top row: Estimated internal noise across all perseveration probabilities (β), shown
for n = 150, 500, and 1000 trials. Bottom row: Internal noise estimates are stratified
by specific perseveration probabilities (β = 0.65,0.75,0.85,0.95). GLM-HMM demon-
strates improved sensitivity to increasing internal noise, especially at higher persever-
ation and larger sample sizes.

7.4 Discussion

In Chapters 2 and 3, we gave biological and computational foundations for understanding

prosody perception, emphasizing the importance of mechanistic, theory-driven approaches

over traditional descriptive assessments. We introduced the reverse correlation method

as well as typical approaches via classification images, GLM and double-pass to estimate

kernels and internal noise. In Chapter 5, we identified two limitations of these classical

methods when confronted with stroke patient data, namely their low robustness to a

low number of trials and to perseverating patients. In Chapter 6, we introduced new
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internal noise estimation methods that do not require double-pass data. To complement

this approach, the current chapter introduced a novel kernel and noise estimation method

(the GLM-HMM model) designed to cope with patient perseveration.

By jointly modeling trial-by-trial fluctuations in sustained attention (i.e., transitions

between perseverative and engaged states) together with reverse correlation parameters

within a single computational framework, our proposed GLM-HMM model enables us to

capture the latent temporal dynamics of attention in an ecologically valid way, without

interrupting the natural flow of the experiment or relying on subjective self-reports.

By fitting a two-state GLM-HMM to simulated observer data, with each state charac-

terized by distinct GLM weights over stimulus features and response history, we were able

to infer periods of engaged versus perseverative responding. The engaged state reflected

stimulus-driven, flexible decision-making, whereas the perseverative state was dominated

by habitual or history-driven choices, consistent with transient lapses of attention.

Crucially, the model recovers not only latent state transitions but also estimates the

stimulus-response kernels and internal noise for each state, yielding a comprehensive,

data-driven characterization of attention dynamics and perceptual processing. Our re-

sults demonstrate that the proposed joint estimation framework outperforms conventional

methods for both kernel and internal noise, particularly in scenarios involving frequent

perseveration.

This new model, combined with the confidence-interval method of estimating internal

noise, provides a way to reanalyse the patient data of Chapter 4. Not only does the method

promise better estimates of reverse-correlation parameters (kernel and internal noise)

because they are not plagued with uncertainties linked to perseveration and a low number

of trials, but the method also offers the opportunity to analyse patient perseveration

parameters (in the form of a state transition matrix). In the next chapter, we will apply

this framework to reanalyse the patient data of Chapter 4, and describe how better

modeling may preserve or modify the correlations with clinical data already observed

with classical methods.
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Part IV

A re-analysis of patient data
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Re-analysis of psychophysical biomarkers

The main objective of the GLM-HMM model was to apply a probabilistic model to detect

hidden states in participants’ responses and provide estimates of kernel and internal noise

that are not plagued by perseveration.

One of the key findings in Chapter 4 is that both internal representations and internal

noise play a major role in differentiating patients from controls, as well as potentially

different subtypes of patients. However, we recognized that representations, and perhaps

most strikingly, internal noise estimates from the double-pass method were contaminated

by perseveration in patients, potentially leading to inflated values. Thus, a primary goal

in this chapter is to assess whether removing perseverative trials using the GLM-HMM

model would affect kernel and noise estimates in our clinical samples, as well as their

correlation with clinical data.

In the following, we first apply the GLM-HMM model to the patient data of Chapter

4 and study how this new model affects estimates of kernel, noise and perseveration

probability (section 8.1). We then use these new estimates to re-evaluate whether reverse

correlation parameters allow separation of controls and patients (section 8.2), MEC > 9

and MEC < 9 patients (section 8.3), how they correlate with associated clinical measures
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(section 8.4), and discuss any potential differences.

8.1 Comparison between new GLM-HMM estimates and

old GLM estimates

To fit the GLM-HMM model to patient data, we used the priors estimated by Bayesian

optimization on the simulation data in Chapter 7, namely: µPER = 0.91, µENG = 2.43,

σPER = 3.79, σENG = 2.43, and α = 1.82. We fit the GLM-HMM with these priors to each

individual patient and then extracted the posterior probability of each trial, the transition

matrix and fitted GLM weights.

8.1.1 Illustrative example

We illustrate the result of this procedure on two example participants, one patient (subj

36) and one control (subj 1).

The fitted patient data (Figure 8.1) exhibit highly fluctuating posterior probabilities,

with frequent transitions between the PER and ENG states throughout the session.(Figure

8.27 and Figure 8.28 show these posterior probabilities separately for each RH stroke pa-

tient and control participant, respectively.) This instability suggests that the patient does

not maintain a stable engagement with the task, potentially reflecting cognitive impair-

ments such as perseveration. The transition matrix confirms this, with a lower probability

of remaining in the ENG state (PENG−>ENG = 0.82) and a higher likelihood of switch-

ing back to PER (PENG−>P ER = 0.18). The kernel comparison reveals more divergence

between the GLM-HMM engaged kernel and the control kernel than the weighted-sum

and GLM kernels, indicating that the patient’s perceptual processing differs significantly

from normative patterns and that classical methods that do not take perseveration into

account may obfuscate these differences.

In contrast, fitted data for control participant Subj1 is initially estimated in the PER

state for about 40 trials before transitioning fully into the ENG state around trial 40. The

transition matrix supports this observation, showing a high probability of staying in either
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state once entered (PENG−>ENG = 0.96, PENG−>ENG = 0.99), indicating stable state

dynamics. The kernel weight comparison shows that the GLM-HMM engaged kernel (red)

aligns closely with the control kernel (green), suggesting that this subject’s perceptual

processing follows the normal pattern of controls. The fact that a control participant

is estimated as perseverating may either reveal limitations of the GLM-HMM fitting

procedure, e.g., in the case where initial responses do not fully conform to the final ENG

state kernel, or true fluctuations of response strategies that are not limited solely to

pathological situations, possibly reflecting transient cognitive fatigue that shifts behavior

toward more habitual, less effortful responses (Pessiglione, Blain, Wiehler, & Naik, 2025).

We will return to a more systematic analysis of state transition in controls below.

8.1.2 Impact on kernel estimation

To assess how removing perseverative trials affects kernel estimation, we compared GLM-

estimated kernels before and after filtering out perseverating trials, i.e., using the classical

GLM kernel vs GLM-HMM kernel estimation.

We first examined whether new estimates modified the proximity of control and pa-

tients to the average kernel of the control group (Figure 8.2-left). Among healthy partici-

pants, the initial correlation between their GLM kernel and the average control kernel was

0.87, which only slightly decreased to 0.84 after removing perseverative trials. This indi-

cates that perseverative trials introduce some noise, but their removal does not drastically

alter kernel estimation in controls. Similarly, in patients, before filtering, the correlation

between each patient’s GLM kernel and the average control kernel was only 0.22, reflecting

a substantial deviation from normative, stimulus-driven responses; after removing perse-

verative trials, this correlation further dropped to 0.19, suggesting that filtering out these

trials does not fully restore a stimulus-driven kernel, and residual distortions remain.

Second, we examined the stability of kernel estimation by comparing the GLM ker-

nel before removal with the GLM-HMM kernel after removal within each group (Figure

8.2-right). In controls, the correlation between these two versions of the kernel was 0.93,

indicating that filtering perseverative trials had minimal impact on kernel structure. How-
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Fig. 8.1 GLM-HMM state recovery and kernel estimation in a healthy subject (top row) and
a stroke patient (bottom row) Left: Posterior state probabilities across trials (n=150)
for each participant. The control subject shows a stable engaged state (green) after
a brief initial perseverative period (orange), whereas the patient alternates frequently
between engaged and perseverative states throughout the session. Center: Comparison
of normalized kernel weights for the engaged state estimated by GLM-HMM (red), the
single-state GLM kernel (orange), the weighted sum kernel (blue), and the controls
group average (green). The control’s engaged-state kernel closely matches the group
average, while the patient’s kernel is more variable and deviates from typical controls.
Right: State transition matrices reveal high state persistence for the control, but the
patient exhibits reduced stability and increased switching between states, especially
between perseverative and engaged periods.

ever, in patients, the correlation was significantly lower at 0.67, suggesting that including

perseverative trials adds a moderate to strong impact on kernel estimation.

These findings highlight that while removing perseverative trials refines kernel esti-

mation, it does not fully align the patient group with control-like kernel structures. This

confirms that perseveration is not the only factor contributing to differences in kernel and

suggests that additional impairments in stimulus processing and decision-making persist

even when patients are classified as engaged.

Intra- and inter-individual analyses (Figures 8.25 and 8.26, at the end of this chapter)
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Fig. 8.2 Kernel typicality analysis for controls and stroke patients Left: Boxplots show the dis-
tribution of kernel distances (typicality) relative to the control group for each subject,
as estimated by the GLM-HMM (engaged state only) and conventional GLM. Con-
trols display consistently high kernel typicality, while patients show greater variability
and generally lower values, indicating persistent deviations from normative stimulus-
response mapping even after filtering out perseverative trials. Right: Scatter plot
comparing kernel typicality scores from the GLM-HMM and GLM for each individ-
ual. Controls cluster near the identity line, confirming stable kernel estimates, whereas
patients exhibit more scatter, further highlighting individual differences in perceptual
precision and the limited effect of removing perseverative trials on restoring a stimulus-
driven kernel.

further illustrate that kernel estimates for control participants remain relatively stable

across the three estimation methods (CI, GLM, GLM-HMM), suggesting that persever-

ation minimally affects these individuals. In contrast, RH stroke patients display more

variability in kernel shape and magnitude between methods, reflecting greater heterogene-

ity in response strategies and a stronger impact of perseveration on kernel estimation.

8.1.3 Impact on internal noise estimation

Beyond kernel estimation, we investigated internal noise as a potential biomarker, a con-

cept thoroughly discussed in Chapter 6. Internal noise quantifies the variability in an

observer’s decision-making process that is not directly driven by the stimulus, making it

a crucial measure of sensory uncertainty and cognitive stability.

Focusing on the engaged state, where decisions are primarily stimulus-driven, we
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sought to determine whether internal noise levels remain stable or differ between pa-

tients and controls. If internal noise remains significantly elevated in patients, even when

perseveration is removed, it would confirm that the high levels of noise seen in Chapter

4 are not overestimated because of perseveration but indicative of a broader impairment

in sensory integration or cognitive control.

To assess this, we estimated internal noise before and after filtering perseverative

trials, using the confidence interval of the GLM as a measure of variability (as proposed

in Chapter 6).

Our findings (Figure 8.3) reveal a significant reduction in internal noise after remov-

ing perseverative trials, with 80% of cases (62 out of 78) showing lower internal noise

values post-filtering. The average internal noise for controls decreases from 1.4 to 1.06,

whereas for patients, it dropped substantially from 7.19 to 2.82. This suggests, first, that

perseveration contributes significantly to increased estimated internal noise in this group,

i.e., that much of the apparent decision variability in patients is not due to inherent

noise but rather to lapses in attention characterized by perseverative responding. This

distinction is important: it implies that interventions targeting sustained attention and

strategies to reduce perseveration could meaningfully improve perceptual decision-making

in stroke patients. Second, and nonetheless, even after excluding perseverative episodes,

patients’ internal noise remains higher than that of controls, suggesting that additional

impairments in sensory integration or cognitive control persist.

8.2 Comparison between patients and controls on the new

estimates

8.2.1 Kernel typicality

A key result of Chapter 4 was that kernel typicality strongly differentiated patients and

controls. By identifying perseverative trials, the GLM-HMM method aims to obtain a

more accurate estimation of the GLM kernel for engaged trials.

Figure 8.4 shows how old (CI, GLM) and new (GLM-HMM) methods differ in compar-
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Fig. 8.3 Comparison of internal noise estimates for controls and patients, before and after re-
moving perseverative trials Left: Boxplots show that patients exhibit higher internal
noise than controls when measured with standard GLM, but internal noise is signifi-
cantly reduced for both groups, especially patients, when estimated using only engaged-
state trials with GLM-HMM. Right: Scatterplot comparing internal noise values from
GLM-HMM (y-axis) and GLM (x-axis) for each participant. Most points fall below the
diagonal, indicating that internal noise decreases after excluding perseverative trials.
This reduction is especially pronounced in patients, suggesting that perseveration in-
flates estimates of sensory uncertainty and that filtering out these trials yields a more
accurate measure of intrinsic perceptual noise.

Fig. 8.4 Comparison of internal representations (kernels) for controls and patients, estimated
using three different methods Classification Image (CI, left), GLM (middle), and GLM-
HMM (right, based only on engaged trials). For all methods, kernels are plotted as a
function of time (segment index within word).
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ing patient and control kernels. The main difference is that after removing perseverative

trials, estimated kernel magnitudes for patients tend to be lower, more uncertain, and

more different from controls than with previous methods.

It appears unlikely that including perseverating trials in kernel computation acciden-

tally made patient responses more similar to controls. A more likely interpretation is that

a significant proportion of patient responses occur in the perseverative state. Specifically,

while controls have an average of 119 engaged trials out of 150 (80%), patients have sig-

nificantly fewer, with only 62 engaged trials out of 150 (41%). This substantial reduction

in trial count affects kernel estimation, as seen, for instance, in Figure 3.3, limiting our

ability to obtain robust kernel estimates.

In figure 8.5, we present a scatter plot comparing patients’ kernel typicality in dark

blue and how closely their kernel resembles that of a control group in orange across three

different methods: kernel-CI (Classification Images or weighted sum) for all trials, kernel-

GLM (Generalized Linear Model) for all trials, and kernel-HMM, which represents the

GLM kernel computed only for engaged trials. The size of each point represents the

number of engaged trials for each participant, binary classified as “less engaged” or “more

engaged” based on the number of engaged trials (cut-off value: n = 114/150 for controls, n

= 70/150 patients). Our findings indicate that patients with fewer engaged trials tend to

deviate further from the diagonal line, which represents the similarity between methods.

This effect is particularly evident in the third plot, where patients with fewer engaged trials

show a pronounced divergence from the diagonal, highlighting the impact of engagement

level on kernel similarity across methods.

8.2.2 Internal noise

Figure 8.6 shows scatter plots comparing internal noise across different estimation meth-

ods.

We observe distinct patterns between patients and controls. The Double-Pass (DP)

method, which does not account for trial-by-trial state transitions, tends to overestimate

internal noise in patients with low engagement, as seen in the upper-left quadrant of
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Fig. 8.5 Scatter plots comparing kernel typicality between methods for controls (orange) and
patients (blue) Left: kernel-GLM vs. kernel-CI, Middle: kernel-HMM vs. kernel-
CI, and Right: kernel-HMM vs. kernel-GLM. Each point represents a participant;
the proximity to the diagonal indicates greater similarity in kernel typicality between
methods. Controls generally cluster along the diagonal, reflecting high agreement
across methods. In contrast, many patients, especially those with fewer engaged trials,
deviate from the diagonal, most notably in the GLM-HMM vs. GLM comparison,
illustrating that lower engagement leads to reduced method agreement and greater
variability in kernel estimation.

the DP vs. GLM-HMM plot (figure 8.6). This suggests that many of these patients

had perseverative trials that artificially inflated their noise estimates. In contrast, when

using the GLM-HMM method, which isolates engaged trials, internal noise estimates

decrease, particularly for low-engagement patients. Highly engaged patients, represented

by larger points, exhibit more stable noise estimates across all methods, indicating that

their decision-making is less affected by perseveration.

Similarly, the GLM method, which estimates noise across all trials without distinguish-

ing between states, generally reports higher internal noise than GLM-HMM, particularly

in patients with low engagement. This highlights the importance of accounting for perse-

verative trials in noise estimation, as their inclusion in GLM leads to inflated confidence

intervals and higher uncertainty. Controls, on the other hand, consistently show low inter-

nal noise across all methods, aligning closely with the diagonal in all plots. The absence of

points in the lower-right quadrant of the DP vs. GLM-HMM plot confirms that patients

with low DP noise also have low noise when assessed through engaged trials, reinforcing
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Fig. 8.6 Scatter plots comparing internal noise estimates across three methods: Double-Pass
(DP) vs. GLM (left), GLM vs. GLM-HMM (middle), and DP vs. GLM-HMM
(right), for controls (orange) and patients (blue). Each point represents a participant,
with point size indicating the number of engaged trials. In patients, both DP and
GLM methods, when applied across all trials, tend to overestimate internal noise,
especially for those with lower engagement, as shown by points deviating above the
diagonal. The GLM-HMM method, which isolates engaged trials, yields lower and
more accurate internal noise estimates for these patients, bringing their values closer
to those of controls. Highly engaged participants (larger points) show consistent noise
estimates across all methods. These results highlight the importance of accounting for
trial-by-trial fluctuations in engagement, as failing to do so leads to inflated internal
noise estimates in patient populations due to perseverative responding.

the idea that noise, when present, is pervasive rather than trial-specific.

Overall, these findings confirm that perseveration significantly impacts internal noise

estimation in patients, leading to overestimation in DP and GLM methods. The GLM-

HMM approach provides a more refined measure by focusing only on engaged trials,

revealing that some patients had artificially high noise estimates due to perseverative

responses. This highlights the importance of separating engaged from perseverative trials

to obtain a more precise assessment of response consistency and decision-making reliability

in patient populations.
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8.2.3 A new biomarker: transition probabilities

Our analysis of transition matrices for both a healthy participant and a stroke patient

reveals distinct differences in state-switching behavior between patients and controls. One

key question we explored was whether patients exhibit more frequent state transitions than

controls, and if so, in which direction.

Fig. 8.7 Schematic illustration of average state transition probabilities for controls (left) and
patients (right). Arrows indicate the probability of remaining in or transitioning be-
tween the engaged (ENG) and perseverative (PER) states. Controls are more likely to
remain in the engaged state (p22 = 0.8), while patients tend to persist in the persever-
ative state (p11 = 0.8) and are less likely to transition back to engagement (p21 = 0.27
for patients vs. p21 = 0.2 for controls). These results highlight group differences in the
dynamics of state switching.

Fig. 8.8 Comparison of state transition probabilities for controls (orange) and patients (blue).
Patients exhibit significantly higher probabilities of remaining in the perseverative
state (PERtoPER) and lower probabilities of switching from perseverative to engaged
state (PERtoENG) compared to controls. No significant group difference is observed
for transitions from engaged to perseverative (ENGtoPER) or engaged to engaged
(ENGtoENG) states.

On average, patients show a slightly higher tendency to perseverate, remaining in

the perseverative state with a probability of 0.27 (equivalently, transitioning back to the
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engaged state with a probability of 0.73). In contrast, controls exhibit a lower, but

not inexistent, probability of perseveration (0.2) or, equivalently, a higher probability of

maintaining the engaged state (0.8).

The main difference, however, emerges when both groups enter the perseverative state.

Controls tend to exit perseveration more easily, with a 52% probability of returning to

the engaged state (equivalently, a 48% probability of staying in perseveration). In con-

trast, patients show a strong persistence in perseveration, remaining in this state with a

probability of 0.8 or, equivalently, transitioning back to the engaged state only 20% of

the time.

This suggests that the difference between patient and control is not their tendency to

decouple from the stimulus, which is only moderately higher in patients, but rather that,

once patients enter a perseverative mode, they struggle to re-engage with the stimulus,

whereas controls demonstrate greater flexibility in state switching (Figure 8.8).

An alternative view on the same probabilities concerns dwell time, which represents

the number of consecutive trials spent in each state. In Markov processes, dwell time d

in a state i obeys an exponential probability distribution, pi(d) which is a direct function

of state self-transition probability aii:

pi(d) = ad−1
ii (1 − aii) (8.1)

where p
i (d) is the probability of d consecutive observations in a state i (Rabiner & Juang,

1986).

On average (Figure 8.9), healthy participants remain in the engaged state for 10 trials,

whereas stroke patients stay engaged for only 7 trials. In contrast, controls tend to exit

the perseverative state quickly, staying in it for an average of just 2 trials, while patients

remain in the perseverative state for a significantly longer duration, averaging 10 trials.

This confirms the probability observations above: patients enter the perseverative state

moderately more frequently but strikingly struggle to disengage from it once they are in

it.

In addition, we investigated whether transition probabilities are related to old biomark-

ers kernel typicality and internal noise by performing a regression analysis on data from
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Fig. 8.9 Average dwell time (in trials) spent in the perseverative (PER) and engaged (ENG)
states for controls (orange) and patients (blue). Controls typically remain in the
engaged state for around 10 trials and exit the perseverative state quickly (average of
2 trials). In contrast, stroke patients show a much longer dwell time in the perseverative
state (an average of 10 trials) and a shorter dwell time in the engaged state (7 trials),
indicating both greater persistence in perseveration and greater difficulty maintaining
engagement.

both patients and controls. The goal was to determine whether transition probabilities

could predict kernel typicality and internal noise levels. Our results indicate that the

probability of transitioning to the engaged state is significantly associated with kernel

typicality across all three kernel estimation methods (CI, GLM, and HMM), as well as

with internal noise estimated by GLM. However, no significant relationships were found

between transition probability to the perseverative state and kernel typicality or internal

noise. This aligns with our previous findings, where the probability of entering perse-

veration did not significantly differ between patients and controls, suggesting that the

key distinguishing factor is not how often individuals enter perseveration but rather how

effectively they can transition back to an engaged state.
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Fig. 8.10 Relationship between transition probabilities, internal noise, and kernel typicality.
Top row: Probability of transitioning to the perseverative state (“trans-to-per”) as a
function of internal noise (left) and kernel typicality (right). Bottom row: Probability
of transitioning to the engaged state (“trans-to-eng”) as a function of internal noise
(left) and kernel typicality (right). Results show that the probability of transitioning
back to the engaged state is positively associated with kernel typicality and negatively
associated with internal noise, particularly for model-based estimates. In contrast,
transition probability to the perseverative state shows no clear association with either
kernel typicality or internal noise.
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8.3 Comparison between symptomatic and asymptomatic

patients

Another key result of Chapter 4 is that kernel typicality and internal noise allowed to

differentiate controls from patients evaluated at MEC (Montreal Evaluation of Communi-

cation) > 9, which is the cut-off for pathological aprosody. We examine here how removing

perseverating trials affects that result.

8.3.1 Kernel typicality

In Figure 8.11, we present patients classified based on their pathological score in the

MEC. As shown in the scatter plot, we defined patients according to a cut-off score of 9,

with those scoring above this threshold (MEC > 9) represented in dark blue, indicating

no pathological impairment, while those scoring 9 or below (MEC≤ 9) are shown in light

blue, indicating a prosody perception deficit.

Similar to Figure 8.5, the size of the points in the plot represents the number of

engaged trials per patient. On average, patients with MEC > 9 had 71 engaged trials,

whereas patients with MEC≤ 9 had an average of 69 engaged trials. Regarding kernel

typicality across methods, control participants showed consistently high values across

all approaches, with kernel-CI at 0.92, kernel-GLM at 0.93, and kernel-HMM at 0.91.

Among patients with MEC≤ 9, kernel typicality was lower, with values of 0.61 for kernel-

CI, 0.57 for kernel-GLM, and 0.57 for kernel-HMM. Patients with MEC > 9 exhibited

intermediate kernel typicality, with scores of 0.74 for kernel-CI, 0.75 for kernel-GLM, and

0.68 for kernel-HMM. These findings suggest that kernel typicality decreases in patients

with greater prosody perception deficits, particularly when estimated using the GLM or

HMM methods.

Mann-Whitney U tests further confirm these differences. Figure 8.12 shows significant

distinctions between patients and controls but weaker effects when comparing MEC≤ 9

and MEC > 9 patients.

Comparing MEC≤ 9 vs. MEC > 9 patients, there is no significant difference in kernel
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Fig. 8.11 Scatter plots comparing kernel typicality between methods for controls (orange), pa-
tients with MEC > 9 (dark blue), and patients with MEC ≤ 9 (light blue).Left:
kernel-GLM vs. kernel-CI. Center: kernel-HMM vs. kernel-CI.Right: kernel-HMM
vs. kernel-GLM. The size of each point reflects the number of engaged trials per
participant. Controls consistently show high kernel typicality and strong agreement
between methods, clustering near the diagonal. In contrast, patients, especially those
with greater prosodic deficits (MEC ≤ 9, light blue), exhibit reduced kernel typicality,
increased variability, and more points deviating from the diagonal. This pattern high-
lights that prosody perception deficits are associated with reduced kernel stability and
consistency across estimation approaches.

typicality across all methods (p > 0.05). This result should be interpreted with caution,

as the MEC may lack the sensitivity to detect subtle prosodic deficits; thus, even patients

with MEC > 9 may still present with underlying impairments that go unrecognized by

MEC.

Comparing MEC≤ 9 patients to controls, we find highly significant differences across

all kernel estimation methods (p = 0.000), with patients showing significantly lower kernel

typicality. This indicates that patients with severe prosody perception deficits exhibit

markedly different kernel structures compared to controls.

Comparing MEC > 9 patients to controls, there are significant but less pronounced

differences (p = 0.002 - 0.004), indicating that patients categorized by MEC having mild

or no prosody deficits still show reduced kernel typicality compared to controls, but to

a lesser extent than MEC≤ 9 patients. There are no differences in the three estimation

methods at the level of kernel typicality.
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Fig. 8.12 Comparison of internal representations (kernels) across groups and estimation meth-
ods. For each method, Classification Image (CI, left), GLM (middle), and GLM-HMM
(right, based only on engaged trials), kernels are plotted as a function of time (segment
index within word). Results are shown separately for controls (orange), patients cate-
gorized by MEC with mild or no prosodic deficit (MEC > 9, dark blue), and patients
categorized by MEC with severe prosodic impairment (MEC ≤ 9, light blue). Kernels
are plotted as a function of time (segment index within word). For both patient groups,
kernel shapes remain similarly atypical relative to controls, regardless of whether perse-
verative trials are removed (GLM-HMM), suggesting that filtering out these trials does
not markedly improve the quality of internal representations in patients with prosodic
deficits.

Finally, a similar analysis can be done by separating the comprehension and repetition

subtasks of MEC. For patients with normal (or near-normal) prosodic performance on

MEC comprehension task(MEC-c > 9), kernel typicality was significantly lower than

controls across all methods: Kernel CI (p = 0.001, r = −0.67), Kernel GLM (p = 0.001,

r = −0.70), and Kernel HMM (p = 0.001, r = −0.73). For patients with normal (or near-

normal) prosodic performance on MEC repetition task (ME-r > 9), kernel typicality was

significantly lower across all methods: Kernel CI (p = 0.000, r = −0.80), Kernel GLM

(p = 0.000, r = −0.83), and Kernel HMM (p = 0.000, r = −0.84).

8.3.2 Internal noise

The internal noise estimates across different methods reveal key distinctions between

control participants and patients, particularly those with prosody perception deficits
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(MEC≤ 9). In the Double-Pass (DP) method, there is a significant difference between

patients with MEC≤ 9 and controls (p = 0.004), with patients exhibiting much higher

noise levels (2.89 vs. 0.89). However, no significant difference is found between MEC≤ 9

and MEC > 9 patients (p = 0.409), suggesting that DP does not capture within-patient

variability effectively.

This difference persists in the GLM-based estimation, but with even greater separation,

as noise in the MEC≤ 9 group rises to 8.33, compared to 4.4 in MEC > 9 patients

and 1.63 in controls. The GLM method shows a highly significant difference between

MEC≤ 9 and controls (p = 0.000), as well as between MEC > 9 and controls (p = 0.027),

indicating that patients, regardless of severity, exhibit higher noise levels than controls.

However, no significant difference is found between MEC≤ 9 and MEC > 9 patients

(p = 0.138), reinforcing that GLM captures overall group-level differences but not fine-

grained variations within patients. The fact that GLM estimates higher noise suggests

that perseveration inflates confidence intervals when all trials are considered.

When using the GLM-HMM method, which isolates engaged trials, internal noise in

MEC≤ 9 patients is significantly reduced to 3.88, suggesting a more accurate measure of

perceptual variability. Despite this reduction of internal noise, and unlike DP and GLM,

GLM-HMM not only maintains a significant difference between MEC≤ 9 and controls

(p = 0.001) but also between MEC≤ 9 and MEC > 9 patients (p = 0.030). This may be

because perseveration in MEC > 9 patients was more prevalent in repeated trials, leading

to inflated noise estimates in DP and GLM. However, no significant difference is found

between MEC > 9 and controls in GLM-HMM (p = 0.133), indicating that after removing

perseverative trials, the noise levels of MEC > 9 patients resemble those of controls.

As above, a similar analysis can be done by separating the comprehension and repeti-

tion subtasks of MEC. For patients with normal (or near-normal) prosodic performance

on MEC comprehension task(MEC-c > 9), there was a significant difference in the GLM

internal noise estimate (p = 0.006, r = 0.58), where patients showed higher internal noise

than controls. However, other internal noise estimates (DP, old method, and HMM)

showed only marginal trends (p = 0.053 - 0.064), without reaching significance. For pa-

tients with normal (or near-normal) prosodic performance on MEC repetition task (ME-r
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Fig. 8.13 Internal noise estimates across three methods, Double-Pass (Old), GLM, and GLM-
HMM for controls, patients with MEC > 9, and patients with MEC ≤ 9. Patients
with MEC ≤ 9 (greater prosody perception deficits) show significantly higher internal
noise than controls in all methods, but the difference between patient subgroups is
most pronounced in GLM-HMM, which isolates engaged trials. GLM-HMM reveals a
significant reduction in internal noise for MEC > 9 patients compared to MEC ≤ 9
patients, and brings their noise levels closer to those of controls, suggesting that much
of the excess noise in standard GLM and DP estimates stems from perseverative trials.
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> 9), internal noise was significantly higher with GLM (p = 0.000, r = 0.76), HMM

(p = 0.007, r = 0.52), and DP (p = 0.015, r = 0.45), all showing increased noise levels

compared to controls.

8.3.3 Transition probabilities

Figure 8.14 shows transition probabilities for ENG and PER states across controls and

patient groups.

Comparing MEC≤ 9 and MEC > 9 patients, no significant difference was found in the

probability of transitioning to a perseverative state (p = 0.079) or to a non-perseverative

state (p = 0.206), suggesting that both patient groups exhibit similar patterns of state

switching, regardless of the severity of their prosody deficits.

Fig. 8.14 Transition probabilities for perseverative (left) and non-perseverative (right) states
across controls and patient groups (MEC > 9 and MEC ≤ 9). Left: The probabil-
ity of entering the perseverative state (“Transition Per”), Right: The probability of
transitioning to the engaged (non-perseverative) state (“Transition Unper”). Controls
exhibit significantly lower perseverative transition probabilities compared to MEC > 9
patients, but there is no significant difference between the two patient groups. In con-
trast, MEC ≤ 9 patients display a significantly lower probability of non-perseverative
transitions than both controls and MEC > 9 patients, indicating greater difficulty in
returning to or sustaining engagement.

When comparing MEC≤ 9 patients to controls, no significant difference was observed

in the probability of transitioning into a perseverative state (p = 0.792), indicating that
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these patients are not necessarily more prone to perseveration than controls. However,

their non-perseverative transition probability was significantly lower (p = 0.022), meaning

that once in a perseverative state, MEC≤ 9 patients have more difficulty switching out

of it and returning to an engaged state. This pattern points to a deficit in cognitive

flexibility within this group.

For MEC > 9 patients compared to controls, a significant difference was found in

perseverative transition probabilities (p = 0.025), with MEC > 9 patients showing fewer

transitions into a perseverative state. This suggests that these patients, who have less

severe or no prosody perception deficits (MEC > 9), are more resistant to entering per-

severation, resembling control participants. Additionally, no significant difference was

observed in their non-perseverative transition probabilities (p = 0.249), indicating that

their ability to exit a perseverative state is similar to that of controls.

Taken together, these findings highlight that MEC≤ 9 patients exhibit greater dif-

ficulty disengaging from perseverative states, whereas MEC > 9 patients transition less

frequently into perseveration, aligning more closely with controls. This suggests that tran-

sition probabilities could serve as a biomarker for perseveration severity. These transition

probabilities likely reflect broader aspects of cognitive flexibility or executive function-

ing, beyond decision-making alone, with reduced non-perseverative transitions suggesting

greater rigidity in MEC≤ 9 patients and fewer perseverative transitions indicating greater

cognitive flexibility in MEC > 9 patients.

As above, a similar analysis can be done by separating the comprehension and repeti-

tion subtasks of MEC. For patients with normal (or near-normal) prosodic performance on

MEC comprehension task(MEC-c > 9), no significant differences were found in transition

probabilities for perseverative or non-perseverative states (p > 0.05). For patients with

normal (or near-normal) prosodic performance on MEC repetition task (ME-r > 9), tran-

sitions to non-perseveration were significantly lower in this group (p = 0.010, r = −0.50),

suggesting greater difficulty in returning to an engaged state. However, the difference in

perseverative transition probability did not reach significance (p = 0.069).
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8.4 Correlations with clinical measures within the patient

group

In this section, we re-evaluate the various correlations found between reverse correlation

parameters (within the patient group) and clinical measures using the new GLM-HMM

estimates, as well as investigate whether transition probabilities are also sensitive to the

same or other clinical factors. A summary of all statistics reported in this section can be

found in Tables 8.1,8.2 and 8.3.

8.4.1 Correlation with MEC

We analyzed the relationship between GLM-HMM-derived measures and MEC scores

to determine whether kernel typicality, internal noise, or transition probabilities were

predictive of performance on clinical prosody subtests by MEC.

The regression results (Figure 8.15) indicate no significant correlation between MEC

scores and kernel typicality (CI, GLM, or HMM), internal noise, or transition probabilities

(p > 0.05), suggesting that these metrics do not strongly predict the MEC performance.

For kernel typicality, the relationships were positive but non-significant, meaning that

higher kernel typicality does not systematically relate to better MEC scores (Kernel CI:

β = 2.93, p = 0.40; Kernel GLM: β = 3.34, p = 0.33; Kernel HMM: β = −1.77, p = 0.61).

For internal noise, the relationships were negative, indicating that higher internal noise

may be associated with lower MEC scores, though not significantly (double-pass method:

β = −0.80, p = 0.07; GLM: β = −0.26, p = 0.16; HMM: β = −0.23, p = 0.60). Notably,

the old internal noise measure was nearly significant but is no longer after removing

perseverative trials in HMM, suggesting that previously observed effects may have been

inflated by perseveration rather than reflecting ’true’ perceptual variability.

For transition probabilities, higher transition to the engaged state (β = 5.97, p = 0.18)

was positively associated with MEC scores, suggesting that more frequent return to an

engaged state may weakly relate to better communication ability, though not significantly.

Transition to perseveration was also positively associated (β = 1.04, p = 0.81).



170 Section 8.4: Correlations with clinical measures within the patient group

Fig. 8.15 Relationship between behavioral metrics and clinical prosody performance (MEC-
total). MEC-total (Y-axis, all panels) sums two subtests (comprehension and repeti-
tion, 12 points each; max = 24). (Left) Internal noise: Double-pass (DP, old) estimates
(0–5) and model-based GLM/GLM-HMM (new) estimates (up to 20, SD units); show
negative, non-significant association with MEC-total. (Middle) Kernel typicality (0–1)
: both weighted-sum (old) and GLM-HMM (new, engaged trials only) show positive,
non-significant relationships with MEC-total. (Right) Transition probabilities (0–1,
new): probability of transitioning to engaged and perseverative states show positive,
non-significant relationships with MEC-total.

When focusing on prosody comprehension (MEC-C, Figure 8.16), we found a sig-

nificant negative correlation between MEC-C and internal noise from the double-pass

method (β = −0.62, p = 0.043), which we in Chapter 4 took to suggest that patients with

higher internal noise in double-pass trials may struggle more with prosody comprehension.

However, internal noise from HMM was not significantly correlated, implying that this

association in the old method might be driven by perseveration rather than true percep-

tual variability. Kernel typicality (Kernel CI: β = 3.25, p = 0.18; Kernel GLM: β = 3.29,

p = 0.16; Kernel HMM: β = −0.19, p = 0.94) and transition probabilities (Perseverative:

β = 3.83, p = 0.22; Engaged: β= 3.27, p = 0.27) showed no significant relationships with

prosody comprehension.

For prosody repetition (MEC-R, Figure 8.17), none of the predictors showed a signif-

icant relationship with kernel typicality, internal noise, or state transitions (p > 0.05), in-

dicating that repetition performance is not strongly associated with these computational

measures. Notably, the internal noise old method previously showed a weak negative
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Fig. 8.16 Relationship between behavioral metrics and prosody comprehension task (MEC-
comprehension). MEC-comprehension (Y-axis, all panels) is scored out of 12. (Left)
Internal noise: Double-pass (DP, old) estimates show a significant negative association
with MEC-comprehension; GLM and GLM-HMM model-based (new) estimates show
no significant association. (Middle) Kernel typicality (0–1): Both weighted-sum (old)
and GLM-HMM (new, engaged trials only) show positive, non-significant relationships
with MEC-comprehension. (Right) Transition probabilities (0–1, new): probability of
transitioning to engaged or perseverative states shows positive, non-significant associ-
ations with MEC-comprehension.

correlation (β = −0.18, p = 0.37), but this relationship is no longer present in HMM (β

= 0.02, p = 0.93), suggesting once again that the previous measure captured perseveration

effects rather than genuine perceptual noise.

8.4.2 Correlation with AIRTAC

Regression analysis with AIRTAC (central auditory processing ability) revealed strong

significant relationships between kernel typicality and AIRTAC scores (p < 0.01, Figure

8.18), across methods. This indicates that higher kernel typicality is associated with

better auditory processing (Kernel CI: β = 12.08, p = 0.009; Kernel GLM: β = 11.28,

p = 0.007; Kernel HMM: β = 12.72, p = 0.003).

For internal noise, the old method was significantly negatively correlated with AIRTAC

(β = −1.20, p = 0.037), meaning that higher noise in double-pass trials was associated with

worse auditory discrimination. However, internal noise in HMM (β = −0.46, p = 0.49) and
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Fig. 8.17 Relationship between behavioral metrics and prosody repetition task (MEC-
repetition). MEC-repetition (Y-axis, all panels) is scored out of 12. (Left) Internal
noise: Double-pass (DP, old) and model-based (GLM, GLM-HMM) estimates all show
non-significant relationships with MEC-repetition. (Middle) Kernel typicality (0–1):
Neither weighted-sum (old) nor GLM-HMM (new, engaged trials only) kernel typi-
cality measures are significantly associated with MEC-repetition. (Right) Transition
probabilities (0–1, new): probability of transitioning to engaged or perseverative states
shows no significant relationship with repetition performance.

GLM (β = −0.20, p = 0.36) were not significantly related, suggesting that after removing

perseverative trials, internal noise no longer predicts auditory processing abilities.

For transition probabilities, higher transition to the engaged state (β = 5.17, p =

0.51) was positively associated with AIRTAC, suggesting that patients who return to

engagement more frequently tend to perform better in auditory processing, though not

significantly. Conversely, transition to perseveration (β = 0.31, p = 0.95) was slightly

positively associated with AIRTAC but not meaningfully.

The above analysis can be separated between the duration and intensity discrimination

subtasks of AIRTAC. For AIRTAC duration discrimination (Figure 8.19), kernel typicality

across all three methods was significantly correlated with better discrimination (p < 0.05).

Additionally, the old internal noise measure was negatively correlated (β = −0.82, p =

0.007), but this effect disappears in HMM (β = −0.27, p = 0.45), suggesting that the

previous effect may have been driven by perseveration.

For AIRTAC intensity discrimination (Figure 8.20), only kernel typicality showed sig-
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Fig. 8.18 Relationship between behavioral metrics and central auditory processing (AIRTAC).
AIRTAC (Y-axis, all panels) measures auditory discrimination ability. (Left) Internal
noise: The Double-pass (DP, old) estimate shows a significant negative association
with AIRTAC, while model-based (GLM, GLM-HMM) internal noise estimates show
no significant relationship. (Middle) Kernel typicality (0–1): Both weighted-sum (old)
and GLM-HMM (new, engaged trials only) kernel typicality measures are strongly,
positively associated with AIRTAC scores. (Right) Transition probabilities (0–1, new):
Probability of transitioning to engaged or perseverative states shows no significant
association with auditory processing abilities.

nificant correlations (p < 0.05), while internal noise estimates were not predictive. Tran-

sition probabilities were not significantly related, but transition to the engaged state (β

= 3.89, p = 0.39) had a weak positive association, suggesting that patients who return to

engagement more often may have slightly better intensity discrimination.
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Fig. 8.19 Relationship between behavioral metrics and AIRTAC duration discrimination. The
Y-axis in all panels represents AIRTAC duration discrimination performance. (Left)
Internal noise: The Double-pass (DP, old) measure is significantly negatively associ-
ated with discrimination scores, while GLM and GLM-HMM (new, engaged trials) es-
timates show no significant association. (Middle) Kernel typicality (0–1): All methods
(weighted-sum, GLM, GLM-HMM) show a significant positive relationship, indicating
that higher kernel typicality is associated with better discrimination. (Right) Tran-
sition probabilities (0–1, new): No significant association is observed between state
transition probabilities and AIRTAC duration discrimination.
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Fig. 8.20 Relationship between behavioral metrics and AIRTAC intensity discrimination. The
Y-axis represents AIRTAC intensity discrimination performance. (Left) Internal noise
(double-pass, GLM, and GLM-HMM) shows no significant association with discrimi-
nation scores. (Middle) Kernel typicality (weighted-sum, GLM, GLM-HMM) shows a
significant positive correlation, indicating that greater kernel typicality is linked to bet-
ter intensity discrimination. (Right) Transition probabilities (to engaged/perseverative
states, new): neither measure is significantly related to AIRTAC intensity discrimina-
tion, though transitions to the engaged state show a weak positive trend.
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8.4.3 Correlation with LAMA

LAMA is an index of auditory attentional control, reflecting a participant’s ability to stay

engaged in a stimulus-driven task. The regression results (Figure 8.21) show that internal

noise from HMM was significantly negatively correlated with LAMA precision (β = −0.21,

p = 0.0004). This suggests a link between attentional control and internal noise in engaged

trials. Interestingly, the old internal noise measure was also negatively correlated but not

significant (β = −0.10, p = 0.24), suggesting that the previously observed effect was

hindered by perseveration.

Transition probabilities were not significantly related, but transition to the engaged

state (β = 0.34, p = 0.72) showed a weak positive association, suggesting that attentional

control may associate with the capacity to re-engage to the task.

Fig. 8.21 Relationship between behavioral metrics and LAMA precision (auditory attentional
control). Y-axis: LAMA precision score. (Left) Internal noise: GLM-HMM (new,
engaged trials) shows a significant negative association with LAMA precision, indi-
cating that lower internal noise is linked to better attentional control. Double-pass
(old) and GLM (all trials) show weaker, non-significant associations. (Middle) Ker-
nel typicality: positive, non-significant associations with LAMA precision for all kernel
methods. (Right) Transition probabilities (model-derived): not significantly associated
with LAMA precision, though transition to the engaged state shows a weak positive
trend.
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8.4.4 Correlations with MBEA

For MBEA (Montreal Battery of Evaluation of Amusia) total scores to estimate the

impairment in music perception (Figure 8.22), no significant relationships were found

with any predictors (p > 0.05).

The internal noise measured by double-pass had a weak positive relationship (β = 0.05,

p = 0.97), which shifted to a negative trend in HMM (β = −1.51, p = 0.45), suggesting

that perseveration may have contributed to false positives in prior estimates.

Fig. 8.22 Relationship between behavioral metrics and MBEA total score (musical perception).
Y-axis: MBEA total (Montreal Battery of Evaluation of Amusia). (Left) Internal
noise: Double-pass (old method) shows a weak positive (non-significant) association
with MBEA, shifting to a non-significant negative trend for GLM-HMM (engaged tri-
als only), suggesting prior effects may have been influenced by perseveration. (Middle)
Kernel typicality: all methods show positive, non-significant relationships with MBEA
total. (Right) Transition probabilities: probability of switching to engaged or perse-
verative states (GLM-HMM) shows weak, non-significant positive trends with MBEA
total.

8.4.5 Correlations with HADS

For HADS (anxiety and depression scale, Figure 8.23), significant correlations were found

with internal noise from HMM (β = 2.28, p = 0.003), GLM (β = 0.95, p = 0.016), and

the double-pass method (β = 2.30, p = 0.018), as well as with kernel typicality estimated

using HMM (β = −16.31, p = 0.029).
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This suggests that higher internal noise is associated with increased psychological

distress, indicating that patients with more perceptual instability may experience greater

emotional difficulties, or conversely, that anxiety may cause perceptual inconsistencies.

Additionally, the significant correlation with kernel typicality from HMM suggests that

after removing perseverative trials, patients with higher anxiety or depression symptoms

may still exhibit altered stimulus-driven processing.

For transition probabilities, neither transition to perseveration (β = −0.62, p = 0.95)

nor transition to the engaged state (β = −12.80, p = 0.17) were significantly related.

Fig. 8.23 Relationship between behavioral metrics and HADS (Hospital Anxiety and Depres-
sion Scale). Y-axis: HADS total score. (Left) Internal noise: All estimation methods
(double-pass, GLM, GLM-HMM) show significant positive associations with HADS, in-
dicating that greater perceptual instability is linked to increased psychological distress.
(Middle) Kernel typicality: Kernel typicality estimated by GLM-HMM is significantly
negatively correlated with HADS, suggesting that less typical (less control-like) ker-
nels are associated with higher anxiety and depression symptoms; other methods show
non-significant trends. (Right) Transition probabilities: Probability of switching to
engaged or perseverative states (GLM-HMM) are not significantly related to HADS
scores.
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8.5 Conclusion

In this chapter, we re-analysed the patient data presented in Chapter 4, comparing re-

verse correlation estimates obtained with previous methods (kernel: weighted-sum/CI

and GLM, internal noise: double-pass) and the new GLM-HMM method, which combines

the identification of engaged trials, the estimation of kernel with the GLM method in the

engaged state, the estimation of internal noise with the GLM confidence-interval method

in the engaged state, and an additional estimate of transition probabilities between states.

Figure 8.24 summarizes the main differences found between methods.

Fig. 8.24 A comparison of reverse correlation parameter estimates across methods, for controls
and patients. Left: kernel typicality, as estimated with CI, GLM and GLM-HMM.
Middle: Internal noise, as estimated with double-pass, GLM confidence intervals and
GLM-HMM confidence intervals. Right: Transition probabilities estimated with the
GLM-HMM method.

First, the comparison of different methods for measuring kernel (CI, GLM, and GLM-

HMM) revealed no significant differences across methods (Figure 8.24-left), and how these

estimates associate with clinical measures (Table 8.1). Methodologically, this suggests

that the impact of perseveration on kernel estimation was limited and did not impact the

clinical interpretation of kernel typicality. Clinically, while HMM-HLM kernel typical-

ity allowed differentiating between controls and patients, including controls and asymp-

tomatic (MEC>9) patients, it did not correlate significantly with MEC within the control

group. As in Chapter 4, GLM-HMM kernel typicality was positively associated with AIR-
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TAC and not with LAMA and MBEA. It was also found negatively associated with HADS,

while that association was not significant with the old estimates in Chapter 4 (Table 8.1).

Tab. 8.1 Regression results between biomarkers (1): Kernel estimates

Outcome Kernel CI Kernel GLM Kernel HMM
MEC 2.9308 (0.3999) 3.3431 (0.3271) -1.7669 (0.6138)
Prosodie C 3.2471 (0.1792) 3.2887 (0.1657) -0.1950 (0.9372)
Prosodie R -0.3163 (0.8326) 0.0545 (0.9705) -1.5720 (0.2866)
Airtac 12.0803 (0.0095) * 11.2837 (0.0075) * 12.7224 (0.0031) *
Airtac Dur Discr 6.3606 (0.0170) * 5.5400 (0.0249) * 6.9076 (0.0048) *
Airtac Int Discr 5.7197 (0.0498) * 5.7437 (0.0274) * 5.8148 (0.0362) *
Lama Prec 0.7515 (0.2393) 0.9095 (0.1137) 0.4689 (0.4596)
MBEA Total 13.2686 (0.4384) 22.5102 (0.1349) 16.5472 (0.3111)
HADS -9.9711 (0.2012) -11.5011 (0.1305) -16.3155 (0.0297) *
Transition to PER -0.1189 (0.3749) -0.0974 (0.4525) -0.2030 (0.1055)
Transition to ENG 0.4184 (0.0083) * 0.4221 (0.0057) * 0.4213 (0.0047) *

Second, the methods used to estimate internal noise showed clear differences (Figure

8.24-middle). After removing perseverative trials in GLM-HMM, internal noise decreased

significantly in both (MEC>9 and MEC≤ 9) patient groups, showing that a large por-

tion of the high noise estimates made with the double-pass method was likely inflated by

perseverative responses rather than true perceptual variability. Clinically, tighter GLM-

HMM noise estimates still allowed differentiating MEC≤ 9 patients and controls, as well

as MEC≤ 9 and MEC >9 patients. However, it did not separate MEC > 9 and con-

trols contrary to old estimates in Chapter 4, suggesting that this difference was driven

by estimation errors. Unsurprisingly, because of these large differences, internal noise

correlations with clinical measures were quite different from the original results of Chap-

ter 4. While double-pass noise estimates were associated with MEC-comprehension and

AIRTAC, new GLM-HMM estimates aren’t. Conversely, while double-pass noise esti-

mates were not associated with LAMA, new estimated are (Table 8.2). Taken together,

this suggests that GLM-HMM internal noise estimates are in fact quite validly distinct
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from auditory processing measures (MEC and AIRTAC), and associated with attentional

control (LAMA), but that the correct identification of these trends was hindered by esti-

mation errors in our previous results. Additionally, the positive relation between internal

noise and HADS was preserved across methods.

Tab. 8.2 Regression results between biomarkers (2): internal noise estimates

Outcome Internal Noise DP Internal Noise GLM Internal Noise HMM
MEC -0.7989 (0.0709) -0.2573 (0.1598) -0.2284 (0.6035)
Prosodie C -0.6229 (0.0433) * -0.2327 (0.0660) -0.2440 (0.4328)
Prosodie R -0.1761 (0.3650) -0.0245 (0.7587) 0.0155 (0.9330)
Airtac -1.2038 (0.0374) * -0.1952 (0.3582) -0.4606 (0.4987)
Airtac Dur Discr -0.8179 (0.0071) * -0.1316 (0.2639) -0.2728 (0.4484)
Airtac Int Discr -0.3859 (0.2916) -0.0637 (0.6152) -0.1878 (0.6297)
Lama Prec -0.0957 (0.2379) -0.0439 (0.0962) -0.2105 (0.0004) *
MBEA Total 0.0549 (0.9786) -0.9706 (0.1411) -1.5146 (0.4484)
HADS 2.3045 (0.0180) * 0.9513 (0.0162) * 2.2825 (0.0033) *
Transition to PER -0.0015 (0.9345) 0.0068 (0.3490) 0.0036 (0.8235)
Transition to ENG -0.0405 (0.0611) -0.0293 (0.0004) * -0.0253 (0.2267)

Finally, regarding state transitions (Figure 8.24-right), we did not observe a signif-

icant difference between controls and patients in their probability of transitioning into

the perseverative state. This indicates that perseveration is not exclusive to patients;

controls can also exhibit repetitive, non-stimulus-driven responses. However, the critical

distinction was in the ability to exit the perseverative state and return to the engaged

state. Patients showed a greater tendency to remain stuck in perseveration, struggling to

return to an engaged, stimulus-driven behavior, whereas controls were able to transition

back more easily, maintaining a flexible and adaptive response pattern. These findings

suggest that the primary deficit in patients is not an increased tendency to enter perse-

veration but rather an impaired ability to recover from it. This inability to return to an

engaged state may be a key factor in the observed difficulties in stimulus-driven percep-

tion and auditory attention, reinforcing the importance of distinguishing engaged trials
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from perseverative ones when assessing perceptual and cognitive flexibility. Clinically,

transition probabilities did not associate statistically with any of the reported clinical

measures (Table 8.3), which we can either take to suggest that transition probabilities

are an idiosyncratic feature of the task which doesn’t have clinical relevance or (more

optimistically) that perseveration dynamics are, in fact a blind spot of traditional clinical

measures and an important, understudied symptom of post-stroke rehabilitation. The

next and final chapter of this thesis will expand on this perspective by analysing some of

the properties of patient perseveration revealed by the GLM-HMM analysis.

Tab. 8.3 Regression results between biomarkers (3): transition probabilities

Outcome Transition to PER Transition to ENG
MEC 5.9660 (0.1809) 1.0443 (0.8053)
Prosodie C 3.8327 (0.2240) 3.2653 (0.2665)
Prosodie R 2.1333 (0.2649) -2.2210 (0.2099)
Airtac 5.1727 (0.5068) 0.3143 (0.9516)
Airtac Dur Discr 1.2847 (0.7702) 0.7895 (0.7848)
Airtac Int Discr 3.8880 (0.3926) -0.4752 (0.8758)
Lama Prec 0.3372 (0.7276) -0.1572 (0.8271)
MBEA Total 18.8525 (0.4484) 12.6752 (0.4379)
HADS -0.6187 (0.9523) -12.7998 (0.1728)
Transition to PER - 0.0036 (0.8236)
Transition to ENG -0.0253 (0.2267) -
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Fig. 8.25 Kernel estimation using 3 methods for each healthy participant Normalized kernel
weights for pitch discrimination features across 22 control participants, extracted using
three different modeling approaches: Classification images(CI), standard GLM and
GLM-HMM
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Fig. 8.26 Kernel estimation using 3 methods for each RH stroke patient Normalized kernel
weights for pitch discrimination features across 22 RH stroke patients, extracted using
three different modeling approaches: Classification images(CI), standard GLM and
GLM-HMM
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Fig. 8.27 Posterior state probabilities 2-state GLM-HMM across trials for RH stroke patients
Posterior probabilities of the perseverative (PER, orange) and engaged (ENG, green)
states over trials for each patient extracted using the GLM-HMM model.
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Fig. 8.28 Posterior state probabilities of 2-state GLM-HMM across trials for healthy partici-
pants
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Perseveration analysis

The reanalysis of patient data with the new methods developed in this thesis (GLM-

HMM) has confirmed that patients and controls differ in the tendency to perseverate,

and provided new ways to quantify this tendency using transition probabilities. It was

shown, in particular, that patients do not so much differ from controls in the probability

to perseverate, but rather in their ability to exit the perseverative state and return to the

engaged state. Clinically, transition probabilities did not associate statistically with any of

the reported clinical measures, which may suggest that perseveration is an under-studied

and under-measured aspect of post-stroke symptoms.

In this chapter, we provide an exploratory analysis of the characteristics of persever-

ation in our sample, and in particular whether we can link state switching to certain

characteristics of the stimuli or responses in the vicinity of the switch. To do do, we

exploit the fact that fitting the GLM-HMM model provides labels (i.e., posterior state

probabilities) for the most probable state at each trial, and that the characteristics of

these trials (stimuli, responses, response times) are random but known.

Our goal is to explore whether specific parameters influence the likelihood of patients

entering the perseverative state and, conversely, how their behavior differs when they
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do not perseverate. Additionally, we investigate whether there are notable differences

between patients and controls in this posterior analysis, providing further insights into

the mechanisms underlying perseveration and engagement in stimulus-driven tasks.

9.1 Response times in the vicinity of state switching

The data collected as part of Chapter 4 includes a measure of response time (RT), i.e., the

time for each trial between the end of the (automated) play of the second sound stimuli

and when the response button is pressed.

We examine here how RT differs when participants remain in the same state versus

when they transition between states, potentially reflecting shifts in processing dynamics or

attentional fluctuations. While RT is often interpreted as an indirect marker of cognitive

processing demands or decision uncertainty, it can be influenced by a range of factors

beyond cognitive effort alone (Wylie, Yao, Sandry, & DeLuca, 2021).

We first analyse RTs by state. Controls exhibit minimal differences in reaction time

between the perseverative and engaged states (ENG=1.43s, PER=1.47s), suggesting a

relatively stable processing mechanism. Patients not only show longer RTs overall but

also slightly slower responses in the perseverative state (PER=2.18s) than the engaged

state (ENG=2.07s). This pattern of results suggest that the GLM-HMM PER state may

not be subtended by identical cognitive states in controls and patients. In particular, the

slow down of response time in patient perseveration suggests that it is not an effortless,

disengaged process.

To further document such differences, we then compared RTs between engaged trials

that either remained engaged (i.e., all trials in engaged sequences except trials that imme-

diately preceded a switch to perseveration) and engaged trials that immediately preceded

a switch to perseveration. When transitioning from engagement to perseveration, controls

demonstrate a slight decrease of RT decrease (1.45 to 1.25). Conversely, patients exhibit

a significant increase of RT at the time of the switch (1.95 to 2.65), which is consistent

with overall longer PER trials seen above. Again, this suggests that switching to PER is

not the same process for controls and patients. While the former may simply passively
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Fig. 9.1 Reaction times (RT) associated with state transitions in controls and patients. Left:
RTs for engaged trials which either remain engaged (trans2per = 0) or immediately
precede a switch to perseveration (Trans2Per = 1). Right: RTs for perseverated trials
which either remain perseverating (Trans2Eng = 0), or immediately preceded a switch
back to the engaged state (Trans2Eng=1). Controls show minimal RT changes across
state transitions, whereas patients exhibit notably higher RTs overall and particularly
during transitions, especially when re-engaging with the stimulus. Error bars indicate
a 95% confidence interval.

and effortlessly disengage from the task, the latter appear to engage in more effortful

processing despite the repetitive response.

Examining transitions from perseveration back to engagement (trans2eng), we observe

that RTs increase compared to non-transitioning PER trials for both groups. PER trials

at the end of a PER sequence show a moderate slowdown in controls (1.41 to 1.57) and a

more pronounced slowdown in patients (2.12 to 2.5). This could suggest that re-engaging

with the stimulus after a period of perseveration requires additional cognitive processing,

particularly for patients who struggle more to shift back to a stimulus-driven mode.

Taken together, this analysis of RTs highlights potential differences in cognitive flexi-

bility between controls and patients. While controls can fluidly transition between states,

with minimal changes of RTs, patients show increased reaction times when shifting in

either direction, reflecting both difficulty in maintaining engagement and challenges in

exiting the perseverative state. More generally, PER trials in patients are associated

with slower RTs, which suggest that patient perseveration is not an effortless process of
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disengagement from the task but rather involves effortful processing.

9.2 Are perseverations driven by sequences of identical

responses ?

While perseveration by definition involve sequences of repeated identical responses, we

first ask whether there is any evidence in the data that repeated responses may also precede

a switch to perseveration, which would be consistent with the view that perseverating

participants have difficulties inhibiting a response once it is established.

To do so, we extracted all trials in engaged state that immediately preceded a switch

to perseveration (i.e., the last trial in every sequence of successive engaged trials), and

computed the empirical distribution of the number of consecutive identical responses

that was ongoing at these trials, before the switch. Because all trials are random, the

mode of that distribution is likely equal to 1, but it may be larger either because of a

un/lucky sequence of stimuli or response tendencies. We then compared this empirical

distribution with the expected theoretical distribution, which is the cumulated density of

a binomial distribution with probability p = 0.5. We compared both distributions with

the Kolmogorov–Smirnov test, a nonparametric test of the equality of one-dimensional

probability distributions.

In Figure 9.2, we compare the empirical distribution of identically repeated responses

before a perseveration switch for control participants and the theoretical (expected)

distribution. There was no statistical difference between the two distributions (K-S

test,p = 0.88), suggesting that switch to perseveration-like states in controls do not sta-

tistically coincide with preceding sequences of repeated responses.

We conducted the same analysis for patients (Figure 9.3. The empirical distribution

had a larger tail, with some switches occurring after 10 or more successive identical

responses. That pattern over the group of patients differed statistically from the expected

distribution (K-S, p = 0.0036). This suggests that, before a switch to perseveration,

patients exhibit more repetitive responses than what would be expected with random
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Fig. 9.2 Comparison of the expected and observed distribution of consecutive identical re-
sponses before a perseveration switch for controls. Top shows the cumulative distribu-
tions. Bottom shows the corresponding histogram proportions. In engaged trials that
immediately precede a perseveration switch, controls do not exhibit excessive repeti-
tion beyond what is predicted by stimulus-driven behavior (K-S test, p = 0.88).

stimuli.

In conclusion, we find statistical evidence that, in patients, switches to perseveration

tend to be preceded with longer sequences of identical responses than what would be

expected with a binomial response strategy. These responses may be legit, i.e., due to a

un/lucky streak of trials that warrant identical responses, or indicate that perseverating

behaviour has already started before the labeled switch by the GLM-HMM.
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Fig. 9.3 Comparison of the expected and observed distribution of consecutive identical re-
sponses before a perseveration switch for patients. Top: shows the cumulative dis-
tributions. Bottom: shows the corresponding histogram proportions. In contrast to
controls, patients exhibit a significant excess of repeated responses before a switch,
beyond what is expected (K-S test, p = 0.0036).

9.3 Are perseverations driven by trial difficulty ?

Another potential driver for state switching is trial difficulty, measured as the alignment

between the stimulus difference and the participant’s engaged kernel. Because transition

to perseveration may indicate disengagement from the task, it is possible that such switch

coincide with trials for which responses are more difficult, for instance, trials in which the

two stimuli are relatively similar or differ along directions that are not relevant to the
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participant’s kernel.

To operationalize this, trial clarity was quantified as the absolute value of the dot

product between the stimulus difference on each trial and the engaged-state kernel weights

(similar to trial weighting in Chapter 6). Lower values correspond to more ambiguous and

challenging trials, while higher values indicate that the stimulus was well aligned with the

participant’s internal template, making the trial easier to respond to.

We then compared the distributions of trial difficulty between engaged trials that

remained engaged (i.e., all trials in engaged sequences except trials that immediately pre-

ceded a switch to perseveration) and engaged trials that immediately preceded a switch

to perseveration, using a Kolmogorov–Smirnov test. Figure 9.4-right, compares the dis-

tribution of trial difficulty in both types of engaged trials, for patients. The results show

no significant difference in trial difficulty between trials where participants transitioned

to perseveration and those where they remained engaged (K-S, p = 0.67). This suggests

that perseveration is not directly driven by stimulus difficulty. If trial difficulty were a key

factor, we would expect participants to transition into perseveration more frequently in

harder trials. However, since no such effect is observed, it implies that internal cognitive

processes, response biases, or fatigue may play a greater role in state transitions than trial

difficulty alone.

Figure 9.4-left shows the distribution of trial difficulty in patient trials starting in the

perseverative state, comparing those that transitioned to engaged with those that did

not. Here, a significant difference in trial difficulty is observed (K-S, p = 0.005), with the

PER −→ ENG trial displaying more stimulus-kernel alignment (i.e., lower difficulty). To

confirm this effect, a logistic regression was fitted to model the probability of transitioning

from the perseverative to the engaged state as a function of trial difficulty for patients.

The results revealed a small but statistically significant effect: easier trials were associated

with a higher probability of transitioning to the engaged state (GLM, p = 0.034). This

suggest that, while the transition to perseveration is not driven by difficult trials, stimulus

clarity may help participants re-engage with the task following periods of perseveration.

We conducted the same analysis for controls (Figure 9.5). There was no significant

difference in trial difficulty between trials where participants transitioned to perseveration
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Fig. 9.4 Distribution of stimulus alignment across transitions in patients. Left: Perseverative
trials that either transitioned to the engaged state (orange) or remained perseverative
(green). A significant difference was found here, suggesting that in lower trial difficulty
participants can re-engage to the task. Right: Engaged trials that either transitioned to
the perseverative state (orange) or remained engaged (green). No significant difference
was observed between the two distributions.

and those where they remained engaged (K–S, p = 0.33), and no significant difference in

trial difficulty between perseverating trials where participants remained perseverating and

those where they transitioned back to engagement (K–S, p = 0.69). Equivalently, stimulus

alignment was not a significant predictor of state transitions in controls based on GLM

analysis. This suggests that, contrary to patients, trial difficulty does not influence state

transitions in healthy participants.

9.4 Conclusion

In this relatively short final chapter, we reported on an exploratory analysis aiming to

clarify the stimulus and response characteristics in the vicinity of state change and, in

particular whether the switch to PER is partly stimulus-driven.

Our results suggest that the PER state does not necessarily involve the same cognitive

processes in controls and patients. For the former, transition to PER is associated with
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Fig. 9.5 Distribution of stimulus alignment across transitions in controls. Left: Perseverative
trials that either transitioned to the engaged state (orange) or remained perseverative
(green). No significant difference was observed between the two distributions Right:
Engaged trials that either transitioned to the perseverative state (orange) or remained
engaged (green). No significant difference was observed between the two distributions.

faster RTs, suggesting that it corresponds to effortless disengagement from the task. For

patients however, transitions to PER is associated with a marked slowdown of responses,

which suggests that they engage in more effortful processing despite the repetitive re-

sponse.

We then examined whether changes of states are associated with particular charac-

teristics of the stimuli and responses that precede the change. In patients, switches to

perseveration tend to be preceded with longer sequences of identical responses than what

would be expected with a binomial response strategy, and switches back to engagement

coincide with smaller trial difficulty. No such effects were found in controls.

While they are only correlational, such effects are interesting for several reasons. First,

to test for a possible causal effect, one could imagine artificially introducing sequences of

trials that warrant identical responses and seeing if these make patients more likely to

enter perseveration; conversely, when patients are found to be perseverating, one could

imagine a closed-loop procedure where they are presented easier trials to test if this drive

them back to task engagement. Second, these effects may suggest a possible strategy to
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avoid perseverating behaviour in patients, by avoiding to prevent long sequences of trials

that warrant identical responses. Further experimental work will be needed to test the

causality of this possible relation.

Finally, the fact that controls do not display such associations confirms the results of

response time and suggest that PER states labeled by the GLM-HMM in control data do

not correspond to the same underlying cognitive process than patients.
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Conclusion

10.1 Summary of contributions

The goal of this thesis was to improve the diagnosis and comprehension of deficits of

prosody perception after a brain stroke by capitalizing on a recently developed psy-

chophysical technique, reverse correlation.

As discussed in Chapters 2 and 3, survivors of right-hemisphere stroke may experi-

ence deficits in prosody perception that persist from the acute to chronic phase. These

impairments can often remain subtle and undetected during speech therapy sessions when

assessed using standard batteries. Reverse correlation appears to be a promising method

to uncover the psychophysical parameters of such deficits when present.

In Chapter 4, we presented an initial analysis of reverse correlation data, collected

prior to the thesis (the work of speech therapy students Mélissa Jeulin, Pauline Bardet,

Pauline Commère, supervised by Marie Villain, Emmanuel Ponsot and JJ Aucouturier),

using the reverse correlation paradigm of Ponsot, Burred, et al. (2018), and the two

classical methods of classification-image kernel estimation and double-pass internal noise

estimation. Our results showed that analyzing the patients’ kernels and internal noise
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provide a way to identify distinct pathological profiles and uncover the diverse sensory

and cognitive mechanisms that underlie prosody processing impairments after stroke.

These results were published in Scientific Reports (2024).

Based on this data, in Chapter 5, we identified two key challenges that affect the

reliability of classical methods for estimating internal noise and mental representations:

the limited number of trials and perseveration. The limited trial count imposes constraints

on the precision of estimations, particularly that of internal noise. Perseveration disrupts

both the stimulus-response relation and response variability, leading to large estimation

errors in both kernel and noise. Taken together, the results of Chapter 4 and 5 have led

to the definition of a problem statement for the remainder of the thesis: in order to apply

reverse correlation to patient populations and to fatiguable/perseverating stroke patients

in particular, we needed to develop kernel and internal noise estimation methods that are

both robust to a low number of trials and to local disruptions of decision strategy such

as perseveration.

The next part of this thesis has introduced several methodological contributions that

address this problem. In Chapter 6, we introduced and evaluated three new methods

to estimate internal noise in the absence of double-pass trials. These methods address

both problems above: first, because they do not rely on double-pass data, they allow

using the complete set of trials in an experiment to infer internal noise, which is likely

an advantage with small-trial setups such as here. Second, because they do not restrict

internal noise measurements to specific blocks, they are also expected to be less sensitive

to local perturbations such as perseverations. Of these three methods, two were developed

by collaborators (Ladislas Nalborczyk, JJ Aucouturier and Marie Villain) and one (GLM

confidence intervals) by myself; my contribution is also to compare them against one

another and against the double-pass method. Perhaps most importantly for our context

here, at low/very-low number of trials (ex. n = 100 single-pass, or n = 50 repeated

trials), we found that the double-pass method achieves an unimpressive 48% relative

error, while we evaluated our best methods at an error of 30%, and even 20% when

increasing the number of trials to n = 600. This chapter was presented in the format of a

preprint, co-written with L.N, JJ.A. and M.V, and which is intended for submission at a
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methodological journal such as Behaviour Research Methods or Quantitative Methods for

Psychology.

In Chapter 7, we then introduced a new method to conjointly estimate both linear-

observer parameters and perseverating episodes, using a joint model with two latent states

(input-output hidden Markov model, or GLM-HMM). We showed that this model is able

to recover perseverating episodes by taking into account not only repeated responses but

also stimuli-response relations and therefore, to improve the accuracy of kernel and noise

estimates across non-perseverated episodes.

In part IV, we then applied this new and improved set of methods to reanalyse the

experimental data of Chapter 4 and confirm or infirm the clinical interpretability of reverse

correlation estimates. In Chapter 8, we found that the comparison of different methods

for measuring kernel (CI, GLM, and GLM-HMM) revealed no significant differences across

methods and how these estimates associate with clinical measures. However, the methods

used to estimate internal noise showed clear differences. After removing perseverative

trials in GLM-HMM, internal noise decreased significantly in both (MEC>9 and MEC<9)

patient groups, showing that a large portion of the high noise estimates made with the

double-pass method was likely inflated by perseverative responses. Clinically, contrary to

double-pass estimates, GLM-HMM noise estimates were no longer correlated with MEC-

comprehension and AIRTAC but were correlated to LAMA. Finally, GLM-HMM estimates

of transition probabilities between states provided another set of potential biomarkers

and showed that the primary deficit in patients is not an increased tendency to enter

perseveration but rather an impaired ability to recover from it.

In a short final chapter (Chapter 9), we used the GLM-HMM’s ability to estimate

perseverating episodes to provide a supplementary analysis of what factors may influence

perseveration in patients. Our results suggest, first, that the perseverating state does

not necessarily involve the same cognitive processes in controls and patients. For the

former, transition to PER is associated with faster RTs, suggesting that it corresponds

to effortless disengagement from the task. For patients, however transitions to PER is

associated with a marked slowdown of responses, which suggests that they engage in more

effortful processing despite the repetitive response. Second, we examined whether changes
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of states are associated with particular characteristics of the stimuli and responses that

precede the change. We found that, in patients, switches to perseveration tend to be

preceded with longer sequences of identical responses than what would be expected with

a binomial response strategy, and switches back to engagement coincide with smaller trial

difficulty or stimulus-kernel alignment.

10.2 Perspectives

This thesis offers initial insights into how reverse-correlation parameters, when correctly

estimated, can be used to inform the clinical evaluation of brain stroke patients suffering

perceptual deficits. Naturally, many questions remain open for future research.

From a methodological perspective, one of the most compelling directions involves

developing joint neural embedding and behavioral models, also investigating physiological

(EEG, eye-tracking, etc.) markers for attention detection (Cai, Su, Xie, & Li, 2021), or

consciousness (described in Shadlen and Kiani (2011) as a “decision to engage”). Another

particularly valuable approach would be to design a closed-loop stimulus presentation

system. Such a system would adapt in real time to transitions in mental state and task

difficulty while also allowing for significant reductions in experimental time. This would

be especially beneficial for participants prone to fatigue and would facilitate the rapid

and precise extraction of mental representations.

From a cognitive perspective, one of the most interesting perspective of this work is

that reverse-correlation, and more generally perceptual decision-making models generally

fail to account for the possibility that individuals may transition between different mental

states multiple times within a single session. Although the study includes a limited sam-

ple of 22 right-hemisphere post-stroke patients and 22 healthy participants, it effectively

captures the interplay between internal experiences and external stimuli. The findings

suggest that individuals process external events differently depending on their internal

state. Such states may be a various natures. Here, perseveration and engagement may be

described as “attentional”. It would also be interesting to explore other forms of internal

states, for instance affective states related to task performance, such as discouragement
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or pride. Another open question is the neural bases of such state changes. Recent stud-

ies about mind wandering (Xie & Xu, 2024; Zhang & Kool, 2024), have emphasized the

importance of investigating the interconnectivity of brain networks, cerebral activity pat-

terns across regions, and the cognitive functions associated with shifting mental states.

Finally, from a clinical perspective, while this thesis has focused on data recorded

on a sample of RH stroke patients, the same paradigm could easily be used with other

populations – perhaps most obviously LH stroke patients. Comparing RH and LH stroke

patients on their reverse correlation parameters would inform on the specificity of ker-

nel vs internal noise alterations and speak to the debate of the lateralization of prosodic

processing. More generally, given a larger sample of patients, it would be interesting to

perform symptom-lesion mapping to investigate whether kernel, noise and perseveration

parameters are associated with lesions in different sub-networks. In addition, these psy-

chophysical markers could be studied longitudinally, e.g., in patients undergoing brain

tumor resection or during post-stroke rehabilitation, to assess how perceptual and cog-

nitive parameters evolve over time. Finally, because the reverse correlation task can

be adapted to a variety of auditory/linguistic judgements (e.g., emotional prosody), the

models developed in this thesis hold promise not only for stroke patients but also for

individuals with ASD, schizophrenia, and other brain injuries associated with perceptual

or emotional atypicalities.
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Résumé Cette thèse vise à améliorer le diagnostic et la compréhension des déficits

de perception de la prosodie chez les patients ayant subi un AVC dans l’hémisphère

droit, en utilisant la technique psychophysique de la corrélation inverse. Alors que les

outils d’évaluation standard manquent de sensibilité et de précision pour détecter de

telles déficiences, la corrélation inverse offre un moyen de quantifier les représentations

sensorielles internes et le bruit interne des patients, fournissant un aperçu des mécanismes

cognitifs et perceptifs perturbés par l’accident vasculaire cérébral.

Dans la première partie, nous avons appliqué des paradigmes de corrélation inverse et

des méthodes d’analyse classiques à des données comportementales provenant de patients

ayant subi un accident vasculaire cérébral et de témoins sains. Ce travail initial a révélé

des profils pathologiques distincts et des différences dans les noyaux perceptifs et le bruit

interne. Cependant, deux limitations critiques sont apparues : le faible nombre d’essais

disponibles et la présence de persévération, une réponse répétitive qui déforme les corre-

spondances entre la réponse et le stimulus. Ces problèmes ont compromis la fiabilité des

techniques standard de corrélation inverse et ont motivé le développement d’approches

plus robustes.

Dans la partie II, nous avons présenté plusieurs contributions méthodologiques. Trois

nouvelles techniques ont été développées pour estimer le bruit interne sans nécessiter

d’essais à double passage, y compris une méthode basée sur des intervalles de confiance

dérivés de GLM. Ces méthodes sont plus précises que les approches classiques, en par-

ticulier dans les scénarios à faible nombre d’essais. Nous avons également proposé un

GLM-HMM pour estimer conjointement les noyaux perceptifs et identifier les états in-

ternes latents, tels que l’engagement et la persévération, sur la base de l’intégration du

stimulus et des schémas de réponse.

Dans la troisième partie, nous avons appliqué ces outils perfectionnés à des données

cliniques. Le GLM-HMM a révélé qu’une grande partie du bruit interne précédemment

mesuré à l’aide des techniques classiques était gonflée par le comportement persévératif. Il



222

est important de noter que les estimations du bruit dérivées des nouvelles méthodes sont

en corrélation avec des évaluations cliniques distinctes, ce qui indique une amélioration

de la validité de la construction. Les probabilités de transition entre les états latents

sont apparues comme de nouveaux biomarqueurs potentiels : les patients ayant subi

un accident vasculaire cérébral n’étaient pas plus susceptibles d’entrer dans des états

persévératifs que les témoins, mais ils présentaient une capacité réduite à s’en remettre.

En outre, la persévération chez les patients était associée à des temps de réponse plus

lents et, avant la persévération, à des séquences plus longues de réponses identiques, ce

qui suggère un mécanisme cognitif différent de celui des témoins. Notamment, le retour à

l’engagement tend à coïncider avec des essais de moindre difficulté présentantun meilleur

alignement entre le stimulus et le noyau interne du patient.

Mots-clés : AVC de l’hémisphère droit, perception de la prosodie, corrélation inverse,

bruit interne, persévération, GLM-HMM



Abstract (in english) Title: Reverse-correlation modeling of deficits of prosody

perception in right-hemisphere stroke

This thesis aims to improve the diagnosis and understanding of prosody perception

deficits in right-hemisphere stroke patients using the psychophysical technique of reverse

correlation. While standard assessment tools lack the sensitivity and precision to detect

such impairments, reverse correlation offers a means to quantify patients’ internal sensory

representations and internal noise, providing insight into the cognitive and perceptual

mechanisms disrupted by stroke.

In Part I, we applied reverse correlation paradigms and classical analysis methods

to behavioral data from stroke patients and healthy controls. This initial work revealed

distinct pathological profiles and differences in perceptual kernels and internal noise. How-

ever, two critical limitations emerged: the low number of available trials and the presence

of perseveration, repetitive responding that distorts response-stimulus mappings. These

issues compromised the reliability of standard reverse-correlation techniques and moti-

vated the development of more robust approaches.

In Part II, we introduced several methodological contributions. Three novel techniques

were developed to estimate internal noise without requiring double-pass trials, including a

method based on GLM-derived confidence intervals. These methods were more accurate

than classical approaches, particularly in low-trial scenarios. We also proposed a GLM-

HMM to jointly estimate perceptual kernels and identify latent internal states, such as

engagement and perseveration, based on both stimulus integration and response patterns.

In Part III, we applied these refined tools to clinical data. The GLM-HMM revealed

that much of the internal noise previously measured using classical techniques was inflated

by perseverative behavior. Importantly, noise estimates derived from the new methods

correlated with distinct clinical assessments, indicating improved construct validity. Tran-

sition probabilities between latent states emerged as new potential biomarkers: stroke

patients were not more likely to enter perseverative states than controls but exhibited
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reduced ability to recover from them. Moreover, perseveration in patients was associ-

ated with slower response times and, before them, longer sequences of identical responses,

suggesting a different cognitive mechanism than in controls. Notably, switches back to

engagement tended to coincide with trials of lower difficulty / greater alignment between

the stimulus and the patient’s internal kernel.
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