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Neural adaptation to changes in self-voice
during puberty

Neurosciences
Highlights
In adolescence, one’s own voice
changes significantly due to a surge
of pubertal hormones, resulting in a
distinctive voice signature. A person’s
unique voice signature signals one’s
own individuality and becomes in-
creasingly relevant as social networks
expand.

While these puberty-related changes
contribute to the development of a
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The human voice is a potent social signal and a distinctive marker of individual
identity. As individuals go through puberty, their voices undergo acoustic changes,
setting them apart from others. In this article, we propose that hormonal fluctua-
tions in conjunction with morphological vocal tract changes during puberty estab-
lish a sensitive developmental phase that affects the monitoring of the adolescent
voice and, specifically, self–other distinction. Furthermore, the protracted matura-
tion of brain regions responsible for voice processing, coupledwith the dynamically
evolving social environment of adolescents, likely disrupts a clear differentiation of
the self-voice from others’ voices. This socioneuroendocrine framework offers a
holistic understanding of voice monitoring during adolescence.
unique voice signature, they also initiate
a sensitive period of voice monitoring.

We propose that, together with hor-
monal changes, the protracted develop-
ment of brain regions engaged in voice
monitoring and a dynamically changing
social environment might affect how
the self-voice and others’ voices are
discriminated. A socioneuroendocrine
framework is needed to comprehen-
sively examine how we perceive and dif-
ferentiate ourselves through our voice as
well as how alterations in these capaci-
ties can lead to pathologies related to
self–other distinction.
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A person’s journey toward developing a unique voice: a balance of
distinctiveness and vulnerability
There are approximately eight billion speaking humans in the world, and yet there are no two
voices alike. Just like a fingerprint, every voice is acoustically unique and encodes a myriad of
personal characteristics, including physical and personality cues. As an exceptional means to
express oneself [1], the unique voice is linked to bodily self-consciousness [2,3] and a validated
marker of altered self-processing [4,5].

Before puberty (see Glossary), child voices are acoustically quite similar [6] and more difficult
to differentiate from one another than adult voices [7]. During puberty, an individual’s own
voice undergoes the most significant acoustic changes compared with other developmental
stages [8], which lead to a unique adult voice signature. As a window into one’s own body
(e.g., perceived age, body size [9,10]; masculinity or femininity [10]), the voice also mirrors the
dramatic pubertal changes in physical appearance [11]. Despite the profound impact of puberty
on vocal development, research has nevertheless mostly focused on the adult voice.

The transition from a child voice to a unique adult voice during puberty raises compelling ques-
tions about the underlying sensorimotor adaptations throughout this period of heightened
plasticity and rapid neural, behavioral, and biological change [12]. In the following sections,
we aim to elucidate the components and roles of voice monitoring. We then review the
existing evidence that highlights the inherent instability of the voice monitoring system in
puberty, particularly in light of a surge in gonadal hormones, associated with fluctuations in
voice control and nonverbal voice decoding that gradually improve toward the end of puberty.
We then explore how this evidence aligns with studies indicating that phenomena such as voice
hearing often manifest during early adolescence, coinciding temporally with pubertal changes
of one’s voice. Finally, we outline potential venues for future research, emphasizing the impor-
tance of implementing and testing predictions derived from a socioneuroendocrine framework
of voice monitoring (see Outstanding questions). This framework accounts for the natural
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Glossary
Auditory verbal hallucinations:
colloquially referred to as ‘hearing voices,’
are externally attributed voice percepts in
the absence of corresponding sensory
input, with perceptual qualities that are
indistinguishable from real voices. They
are understood to exist along a
continuum ranging from benign and
transitory to those requiring medical care.
Foreign accent syndrome: a rare
medical condition where patients show
altered speech patterns that perceptually
resemble a non-native accent.
Forward model: a computational
process that allows predicting the
sensory consequences of an action and
comparing predicted and actual sensory
feedback.
Gonadal steroid hormones: a set of
hormones produced by the gonads –
including androgens, estrogens, and
progestogens – that play a key role in the
reproductive system. When secreted at
puberty, they drive the development of
secondary sex characteristics and the
emergence of sexual dimorphism.
Hypothalamic–pituitary–gonadal
axis: a coordinated system comprising
the hypothalamus, pituitary gland, and
gonadal glands that is critical for sexual
development and reproduction. It is active
during prenatal and early postnatal life,
becomes quiescent throughout
childhood until approximately the age of
10, and is responsible for the onset and
variability in developmental trajectories leading to a unique voice signature and can be applied
to study both typical and atypical voice development.

The building blocks of voice monitoring
Voice monitoring encompasses the intricate processes involved in perceiving and controlling
one’s own voice feedback in vocal production [13]. It serves multiple and partly dissociable func-
tions [14]. It plays a crucial role in regulating and adjusting ongoing vocal production [15]. Voice
monitoring also contributes to distinguishing between self-generated and externally generated
sound leading to motor-induced sensory attenuation [13]. Voice monitoring further enables
individuals to infer or confirm self-relevant information through vocal cues (e.g., personality traits
[16]) and thereby contributes to a more abstract self-representation [16].

Sensory prediction and adaptation
The perception and control of one’s own voice feedback during vocal production rely on an internal
forward model, which enables the brain to rapidly anticipate the sensory consequences of an
action (Box 1). This forward model operates through a feedforward corticopontocerebellar loop
that predicts the sensory consequences of vocalizations and a feedback cerebellothalamocortical
loop, which compares expected feedback with actual input [17–19]. A distinction between self-
generated and externally generated auditory stimuli hinges on the extent to which sensory
feedback deviates from the expected input. When there is a match, self-generated voice feed-
back is perceived as less salient and associated with attenuated sensory cortical responses
compared with unexpected sensory feedback or externally produced voices [20]. The ability
to differentiate between afferent sensory input resulting from one’s own actions (reafferent)
and input from external sources (exafferent) lays the foundation for self–other distinction in
both perception and action [21].

Internal self-voice representation
Expected sensory consequences during speaking are influenced by the internal representation
of how one’s voice sounds compared with other voices. This expectation is shaped by long-term
Box 1. Sensorimotor foundations of self–other voice distinction

Voice production is subserved by sensorimotor loops that scaffold one’s sense of agency and ownership [102], as well as
higher-order levels of the self [103]. It takes the whole brain to monitor the voice. Voicemonitoring in volitional vocalization relies
on a widespread system of functionally connected brain regions, including not only the right temporal voice areas but also
cortical motor and speech planning areas, as well as subcortical regions such as the cerebellum (for a review, see [13]).

During vocalization, an efference copy of the motor command is projected frommotor planning to auditory cortical regions
via the cerebellum to cancel out impending activity to the expected stimulus. The forward model relies on two key
processes: the prediction of the sensory consequences of one’s own action and the detection of mismatches between pre-
dicted and actual sensory input. When actual sensory feedbackmatches a prediction, self-voice input is attenuated, as seen
in N1 amplitude suppression in the electroencephalogram (EEG) [95], reduced activation of the auditory cortex in functional
magnetic resonance imaging (fMRI) [20], and reduced ratings of perceived intensity [104] relative to other voices.

Such indices of motor-induced suppression are considered an implicit proxy of self–other voice distinction [13]. Specifically,
the comparison between predicted and incoming sensory signals allows self-attribution when there is a match and external
attribution in the case of a considerable mismatch. When expected and actual sensory consequences mismatch (e.g., when
sensory feedback is acoustically altered, delayed, replaced with the voice of another speaker, or physically perturbed during
vocal production), an error signal is generated. Although sensory attenuation in the auditory cortex decreases, activity in the
right inferior frontal gyrus increases, signaling the detection of unexpected self-voice changes [20].

Notwithstanding, these sensorimotor mechanisms are not immune to illusion. For example, auditory feedback that is tempo-
rally and phonetically congruent withmotor and somatosensory feedback from the articulators can lead to illusory ownership
over a stranger’s voice [14]. Sound briefly travels outside of the bodywhen it leaves the vocal apparatus before reentering the
auditory system. This feature can make the voice more vulnerable to environmental influences and external misattributions.
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regulation of puberty.
Internal self-voice representation:
an internal template of how one’s own
voice should sound, which relies on
stored knowledge as a function of one’s
personal experience of speaking. Partly
distinct voice representations for self and
others are relevant to preserve a sense
of self even in acoustically challenging
situations.
Puberty: a developmental process in
adolescence, characterized by rapid
neural, behavioral, and biological change.
Its onset is marked by the reactivation of
the hypothalamic–pituitary–gonadal axis,
on average at 10.85 years in girls and
11.79 years in boys, despite large
interindividual variability.
Self–other voice distinction: the
successful tagging of voice input as self-
(versus externally) generated. Self–other
voice distinction is considered to be
facilitated by motor-related sensory
predictions and/or by a robust internal
representation of the self-voice as
distinct from other voices.
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Sensitive period: a developmental
window characterized by heightened
plasticity, when the function of neural
regions or circuits is tuned in an
experience-expectant manner. Its onset
and offset timing are malleable. During a
sensitive period, experiences shape an
organism’s phenotypic development to a
greater extent than during other stages.
Voice monitoring: the perception,
control, and adaptation of one’s own
voice feedback during vocal production
that relies on comparing what one
expects to hear and what one actually
hears.
stored knowledge derived from personal experiences with both self and other voices, accumu-
lated in the context of vocal communication [20]. Evidence suggests that the self-voice is dis-
tinctly represented from other voices, as shown by different patterns of neural activation
[22,23]. This distinct representation enables the detection of differences between self and
other voices even in the absence of efferent information from motor regions while passively
listening to them.

Acoustic voice changes during puberty likely necessitate a recalibration of the internal
sensory prediction and representation of one’s voice. Given the substantial variations in pubertal
timing, tempo, and hormone levels amongmale and female adolescents, aswell as within individuals
of the same pubertal stage and sex [24], it is anticipated that individual differences will emerge in the
neural adaptations to changes in the self-voice during puberty.

Sensitive periods in voice monitoring
A sensitive period denotes a developmental window marked by heightened plasticity, during
which the function of brain regions or neural circuits is tuned in an experience-expectant manner
[25]. The initiation of such plasticity is complex and relies on a combination of biological, genetic,
and experiential factors [26], thus leading to variability in the specific timing of the onset and offset
of each sensitive period among individuals [26].

In infancy and early childhood, crucial anatomical and hormonal changes shape the organization
and maturation of the voice-processing circuitry. The early postnatal surge of sex steroids, also
known as minipuberty (Box 2), profoundly influences vocal and early language development,
contributing to significant sex differences in parameters such as fundamental frequency (F0)
and melody of spontaneous crying [27,28], baby babbling [29], and expressive vocabulary [30].
These effects are comparable with the impact of pubertal changes on brain development [31].

Puberty onset marks the reactivation of the hypothalamic–pituitary–gonadal axis [32], leading
to a surge in gonadal steroid hormones such as testosterone and estradiol. This hormone surge
triggers a period of heightened vocal plasticity and sets in motion sexually dimorphic trajectories in
voice acoustics that could arguably result in sex differences in self–other voice discrimination [33].
Although both male and female adolescents experience increased vocal tract length and volume,
acoustic voice changes are more pronounced in males [34]. Differentiation of male and female
F0 and formant frequency patterns typically begins around age 11 [6,35] and becomes fully
Box 2. Socioneuroendocrine interactions in prenatal and early postnatal human life: a first sensitive period?

The hypothalamic–pituitary–gonadal axis is active not only in adulthood but also during prenatal (between 8 and 24 weeks
of gestation) and early postnatal life, becoming largely quiescent throughout childhood [105]. Around 1 week of age, there
is an increase in the gonadotropins luteinizing hormone (LH) and follicle-stimulating hormone (FSH), which typically peak
between week 1 and 3 months and then decline by 6 months of age [106]. As a result, gonadal hormone production is
activated in a sex-specific manner. Whereas LH levels are higher in boys, FSH levels increase in girls and remain elevated
up to 3–4 years of life [106]. Moreover, estradiol levels fluctuate in girls and decline in the second year of life [106]. The pre-
natal and postnatal hormone surge seems to significantly impact early vocal production in the evolution of spoken lan-
guage. Gonadal hormones affect the development and function of the auditory-vocal system in human infants similarly
to other vocal learners such as songbirds [107]. For example, peripheral estradiol concentration at 4 weeks of life predicts
the ability to produce complex melody patterns in a baby’s crying [108], as well as articulatory skills at 20 weeks [29],
whereas serum testosterone levels have negative effects [29].

Brain areas that play a key role in voice production and perception, such as the right superior temporal sulcus, also show
major maturational changes during this early period of life (e.g., [109]). Several genes are already asymmetrically expressed
toward the right side in the human temporal region between 12 and 14 weeks of gestation [110], when the hypothalamic–
pituitary–gonadal axis is also active. These rapid structural changes may underlie the acquisition of specialization for voice
processing in the right superior temporal cortex found in 7-month-old infants [111].
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established around age 15 [35]. After a secondary descent of the larynx,male adolescents undergo
a significant lowering of pitch, resulting in deeper and more resonant voices than female adoles-
cents [36] or male children [37]. On average, pubertal pitch change in males is completed within
0.5 to 4.0 years [38]. Some male adolescents experience a sudden breakdown in the modulation
of the voice (i.e., an involuntary change in pitch and quality) through a surge in testosterone [39].
Conversely, voice changes in females are more gradual [40], with pitch becoming about one-
third lower than that of female children [37].

The hormone-triggered physiological changes culminate in the development of a unique and
acoustically distinctive voice, along with an idiosyncratic vocal identity by the end of puberty.
However, voice change also brings about increased temporary instability and within-subject
variability in temporospectral voice parameters, including F0 [41] and jitter [42]. Adolescents
undergoing voice changes may experience transient feelings of being out of synch with their
voice, reporting difficulties in controlling vocal loudness, pitch, and vocal range [43] during this
period of transition. For some, this could resemble the experience of hearing another person
talk when speaking [43]. The puberty-related changes that contribute to the formation of a unique
voice signature may arguably start a sensitive period of voice monitoring. This heightened period
of plasticity may come at the cost of disrupting self–other distinction, which is an established
marker of hallucination proneness [13]. In the subsequent sections, we delve into how hormonal,
neural, and social changes may influence the processing of self and other voices, potentially
opening or extending a sensitive period of voice monitoring (Figure 1).

Hormonal changes
There is compelling evidence indicating that sex steroids dynamically modulate vocal learning and
communication across various species, including research on birdsong [44], human infants [29],
and human adults [45] (Box 2). Adolescence, characterized by heightened sensitivity to steroid-
dependent organization [46], represents a particularly significant period for these effects. As the
brain is a target organ for steroid hormones [46], their influence extends to the modulation of
the neural substrates involved in feedback-based vocal control [45].

Specific and enduring effects of pubertal hormones have been observed in brain regions
supporting voice monitoring, including areas in the temporal lobe [47,48] and the cerebellum
[49], as well as white matter tracts connecting these regions [50]. Moreover, sex steroids can
impact the development of beta-band oscillations in the primary motor cortex independent of
chronological age [51]. These oscillations are crucial for mediating top-down motor–auditory
interactions during sensory attenuation of self-generated sensory input [52], serving as an implicit
proxy for self-other distinction.

The effects of gonadal hormones on the adolescent brain appear to be independent of chrono-
logical age [53] but vary by sex [47,48,54] and differ quantitatively and qualitatively from effects
observed in prepubertal or postpubertal stages [46]. Additionally, sex steroids influence plasticity
mechanisms, affecting the opening and closure of sensitive periods [55–57]. Axonal myelination,
a key regulator of sensitive period timing in neurocognitive development, is subject to modulation
by pubertal hormones [57]. For instance, synaptic pruning accelerates around puberty onset in
temporal brain areas engaged in auditory processing [58]. Moreover, adolescent increases in
brain-derived neurotrophic factor, a trigger for plasticity relevant to sensitive periods [26], may
also be regulated by sex steroids [59–61]. Puberty thus plays a pivotal role in the neural organiza-
tion and behavioral maturation of voice monitoring by influencing facilitative factors of plasticity
(e.g., GABAergic inhibition [55]) and inhibitory ones (e.g., myelination [57]) that drive the matura-
tion of sensitive periods.
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Figure 1. Puberty as a sensitive period for voice monitoring in the context of extensive hormonal, neural, and
social changes. A chain of maturational events unfolding in puberty affect voice monitoring, triggered by the reactivation of
the hypothalamic–pituitary–gonadal axis. These include changes related to brain maturation, voice production and
perception, and social reorientation. Together, these changes can temporarily affect self–other voice distinction. In the
brain circuit depicted for the male adolescent, among the thalamocortical projections, only transmission to the motor
cortex is highlighted for illustrative purposes (see also [112]). Region-specific hormonal effects on brain development were
documented in relation to both pubertal development and circulating levels of sex hormones [47,48,50]. Sexual
dimorphism reflects the influence of both organization and activation effects of gonadal hormones [47,48,54]. Notation:
↑, increased; Abbreviations: CB, cerebellum; MC, motor cortex; PN, pontine nuclei; T, thalamus.
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Protracted maturation of brain regions engaged in voice monitoring
Distinct neural systems undergo development at varying rates across childhood and adolescence.
Brain regions involved in voice monitoring follow a protracted developmental trajectory extending
into late adolescence, rendering them susceptible to extended periods of environmental influences
[62]. For example, the cerebellar lobes reach their peak volume later than the cerebrum [54,63]
and later in males (15.6 years) than in females (11.8 years) [54], whereas the auditory temporal
cortex continues to mature beyond other association areas throughout pubertal development
[48,64–66]. In a sample of ten children (aged 8–9 years), ten adolescents (aged 14–15 years),
and ten young adults of mostly right-handed participants (90% per age group), the right (but not
left) superior temporal cortex exhibited increased anatomical and functional intersubject variability
from childhood to young adulthood [67]. This variability might be associated with individual
differences in exposure to voices [67] because of social reorientation in adolescence [68].
Adolescence also marks a critical period for the formation of new functional networks, with the
developing brain functional connectome following a puberty-dependent nonlinear trajectory
[69,70]. Functional connectivity between sensory and motor regions strengthens into early adult-
hood, indicative of enhanced neural efficiency [71,72]. Furthermore, corticosubcorticocortical inter-
faces, such as those between the inferior frontal gyrus and right cerebellar regions, undergo
maturation in vocal production tasks [73].

However, the maturation of neural circuitry engaged in voice monitoring may follow a nonlinear
trajectory, with sensorimotor mechanisms experiencing periods of regression in early puberty
[74], potentially influenced by sex hormones [51,75]. For example, this could be manifested in a
performance dip in adolescents compared with younger children and adults [76]. During this
phase, there may be a notable discrepancy between motor and sensory signals, disrupting
sensorimotor loops established before puberty. This manifests as greater variability in the activation
patterns of oral articulators [77] and longer compensatory response latencies to F0 perturbations in
auditory feedback during early compared with late puberty [78]. Moreover, sensory attenuation of
self-voice feedback is reduced in early puberty [79], likely affecting the accuracy of predicting the
sensory consequences of speaking, particularly during periods of dramatic vocal change [80].
This discrepancy between motor and sensory signals can impact sensorimotor control, adapta-
tion, and the perceived sense of agency in voice production, leading to reports of limited control
over vocal loudness, pitch, and vocal range among adolescents undergoing voice changes [43].
Furthermore, the temporary disruption in self–other voice distinction may occur as labeling
self-generated voice feedback becomes more challenging when feedback is altered [81].

Social reorientation
Dramatic vocal changes leading to a unique voice signature during puberty coincide with signifi-
cant shifts in social environments. While parents and caregivers play primary roles in children’s
social worlds, adolescents increasingly orient themselves toward peers, resulting in an expansion
of their social network size [68]. This shift in social orientation brings about notable changes in the
vocal environment. More than in earlier developmental stages, adolescents experience exposure
to and learning from a diverse array of voices within their own age group, making peer voices
more relevant [82].

However, adolescents also encounter substantial within-subject acoustic variability in peer voices
because these typically experience pubertal changes themselves. This increased acoustic voice
instability could influence how adolescents form and update individual and averaged representa-
tions of others’ voices. Research suggests that voices of familiar and unfamiliar speakers are
encoded and compared with an internal template or stored representation. This template repre-
sents the acoustic average of all voices of the same gender encountered previously and is shaped
6 Trends in Neurosciences, Month 2024, Vol. xx, No. xx
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by both long-term and recent perceptual experience [83]. Nevertheless, introducing within-
speaker variability in voice identity tasks has been found to reduce recognition accuracy in
adult listeners [84]. In adolescence, the acoustic instability of peer voice representations is
expected to impact speaker discrimination and recognition, particularly in early puberty [76].
This instability may also hinder self–other voice discrimination, which is influenced by the acoustic
distance between voices [33]. A less distinct representation of one’s own voice from others
should result in a less efficient self–other voice discrimination. Due to the role of identity process-
ing and speaker knowledge in speech comprehension [85,86] and social trait inference [87],
altered self–other voice discrimination might affect social interactions.
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Figure 2. Pre- and postpubertal voice changes in relation to hormonal and anatomic changes and vulnerability for psychopathology. Hormones: the
hypothalamic–pituitary–gonadal axis is active during prenatal and early postnatal life and is reactivated in puberty. Five pubertal stages can be identified using the
Tanner stages or the self-assessed Pubertal Development Scale: pre-, early, mid-, late, and postpuberty, each lasting approximately 2 years [113]. Girls generally reach
puberty earlier than boys, but there is large interindividual variability [113]. Vocal tract anatomy: the primary descent of the larynx occurs in humans in both sexes at
approximately 3 months of age and continues until 3–4 years. In males, there is a secondary descent of the larynx in puberty [36]. Voice production: there is large
acoustic and motor variability in vocal production in early childhood, but sensorimotor representations become more reliable over multiple productions. When voices
change in puberty, there is increased instability and variability in temporal and spectral acoustic parameters in voice production. At the end of puberty, adolescents
show a sexually dimorphic and unique voice signature, as well as a more complex self-voice representation. Vulnerability: adolescence is a period of enhanced
vulnerability for sex-biased psychopathologies. In particular, voice hearing is most prevalent in the transition from prepubertal to pubertal stages, temporally coinciding
with pubertal changes in one’s voice. Note: in the lifespan development timeline (top), the first 4 years of life are demarcated. Abbreviation: HPG, hypothalamic–
pituitary–gonadal axis.
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Outstanding questions
How does the perceptual representation
of the self-voice change from puberty
onset to the end of adolescence? How
does this new representation align with
the acoustic changes in one’s own
voice at any given time?

Do other-voice representations change
as a function of size and composition
(peers versus caregivers) of one’s social
network?

How do dynamic changes in the self-
voice representation impact sensory
suppression to voice feedback through-
out pubertal development?

Voices may change slowly and gradually
in some adolescents and quickly in
others. Voice change may also be
precocious (e.g., in case of central preco-
cious puberty) or delayed for organic rea-
sons (e.g., functional hypogonadotropic
hypogonadism). How do these differ-
ences impact adaptation to dynamic
acoustic changes in one’s own voice?

How do changes in voice monitoring
and the functional reorganization of
the underlying neural circuitry in
puberty relate to levels of circulating
sex hormones?

How does the self-voice representation
differ from representations of familiar
and unfamiliar peer voices throughout
adolescence? Are differences constant
over time, or do they change dynami-
cally as a function of levels of circulating
sex hormones?

If the voice is a key defining feature of our
individuality, what happens when the
voice connected to the self radically
changes? Do dynamic changes in
voice acoustics and in self-voice repre-
sentation predict changes in one’s self-
concept?What are the underlying neural
mechanisms?

The self-voice is a multimodal percept.
How does the changing body affect
self-voice perception and vice-versa?

Can differences in self-voice percep-
tion explain why auditory hallucinations
remit in most adolescents and persist
in others?
Translational aspects of a sensitive period for voice monitoring in puberty
The evidence presented earlier suggests that the natural disruption triggered by changes in
hormone levels, brain maturation, and interpersonal environments prompt a recalibration of
sensorimotor loops driving adaptation to acoustic changes in the self-voice. A transient alteration
of voice abilities in early puberty precedes significant improvements in complex skills such as
speaker recognition [76] or the ability to express one’s identity and social traits through volitional
voice control [88]. The maturation of these abilities extends throughout adolescence into adult-
hood at a more protracted rate than face processing [89]. This stabilization during the vocal
transition from childhood to adulthood is underpinned by an increase in the reliability and effec-
tiveness of neural signaling at the circuit and network levels, which is a functional outcome of a
sensitive period in development [26].

However, this developmental phase also presents a specific time window for an atypical reorga-
nization to emerge and interfere with adaptive functioning (Figure 2). Adolescence is a period
of enhanced vulnerability for psychopathology, with altered self–other distinction central to
numerous psychiatric disorders whose prevalence increases in adolescence or in the transition
to young adulthood, such as obsessive-compulsive disorder [90], psychosis [91], or personality
disorders [92]. Adolescence appears to be a unique period of vulnerability for developing
auditory hallucinations, which may occur as a normal variation in development [93]. Voice
hearing is most prevalent during the transition from prepubertal to pubertal stages compared
with adulthood [94], temporally coinciding with pubertal changes in one’s voice. Previous
studies in adults suggest a link between hallucination proneness and hyperprocessing
of self-voice feedback [95] and blurred self–other voice distinction [96], similar to patterns
observed in early puberty.

Atypical social experience, brain maturation, and pubertal timing may enhance vulnerability for
auditory hallucinations by altering the way adolescents experience the sensory consequences
of speaking and their ability to distinguish these sensations from those expressed by other
agents. For example, social isolation, often associated with voice hearing in adolescence [97],
could imply reduced exposure to one’s own voice feedback and to peer voices, disrupting
vocal learning as well as the robustness and stability of voice representations. Studies in rats
have shown that social isolation leads to reductions in myelin thickness and myelin-associated
glycoprotein [98], known as plasticity braking factors. Moreover, hallucination proneness has
been linked to perturbations in circuit function and aberrant functional connectivity between
brain regions such as the cerebellum and temporal cortex [13] and the right temporal and frontal
brain regions [99]. Gonadal hormones have also been associated with an increased risk for
psychosis [100]. These perturbations could lead to long-lasting outcomes that may not
occur if they were experienced later in life.

It is important to note that the timing of both pubertal and neural changes differs for male and
female adolescents. Differences in the timing of interactions between pubertal hormones and
brain maturation could lead to sex differences in the risk for disorders or symptoms associated
with altered self–other distinction, such as the higher prevalence of auditory hallucinations in
male than female adolescents [101].

Concluding remarks
The voice serves as a unique expression of individual identity. Puberty instigates the most
dramatic changes in the voice across the lifespan, affecting every developing individual. These
voice changes can also have enduring effects on one’s sense of self. We propose a sensitive
developmental voicemodel that delineates a cascade of maturational events unfolding in puberty,
8 Trends in Neurosciences, Month 2024, Vol. xx, No. xx

CellPress logo


Trends in Neurosciences
influencing voice monitoring potentially at the expense of disrupting self–other voice distinction
and heightening vulnerability to phenomena such as auditory hallucinations.

The socioneuroendocrine framework we propose points to several directions for further research
on voice monitoring in adolescence (see Outstanding questions). Investigating these processes
will enable the identification of optimal timing and targets for intervention and prevention strate-
gies aimed at altering the trajectories of interactions between pubertal, brain, and behavioral
development, thereby mitigating impaired self–other voice monitoring. Elucidating how changes
in one’s voice can impact one’s sense of self may offer a basis for investigating a broader
spectrum of conditions characterized by persistent alterations in the sound of one’s voice,
such as those following total laryngectomy, unilateral vocal fold paralysis, expressive aphasia,
foreign accent syndrome, or cross-sex hormone therapy.
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