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a b s t r a c t

A wealth of behavioral evidence indicate that sounds with increasing intensity (i.e. appear

to be looming towards the listener) are processed with increased attentional and physio-

logical resources compared to receding sounds. However, the neurophysiological mecha-

nism responsible for such cognitive amplification remains elusive. Here, we show that the

large differences seen between cortical responses to looming and receding sounds are in

fact almost entirely explained away by nonlinear encoding at the level of the auditory

periphery. We collected electroencephalography (EEG) data during an oddball paradigm to

elicit mismatch negativity (MMN) and others Event Related Potentials (EPRs), in response to

deviant stimuli with both dynamic (looming and receding) and constant level (flat) dif-

ferences to the standard in the same participants. We then combined a computational

model of the auditory periphery with generative EEG methods (temporal response func-

tions, TRFs) to model the single-participant ERPs responses to flat deviants, and used them

to predict the effect of the same mechanism on looming and receding stimuli. The flat

model explained 45% variance of the looming response, and 33% of the receding response.

This provide striking evidence that difference wave responses to looming and receding

sounds result from the same cortical mechanism that generate responses to constant-level

deviants: all such differences are the sole consequence of their particular physical

morphology getting amplified and integrated by peripheral auditory mechanisms. Thus,

not all effects seen cortically proceed from top-down modulations by high-level decision

variables, but can rather be performed early and efficiently by feed-forward peripheral

mechanisms that evolved precisely to sparing subsequent networks with the necessity to

implement such mechanisms.
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1. Introduction

The human auditory systemhas evolved to respond efficiently

to fast and unpredictable changes in the acoustic environ-

ment that could be relevant for survival. One of the most

salient examples of such prioritized auditory processing is the

perceptual bias towards looming vs receding sound sources,

which are typically simulated in the lab using simple

increasing or decreasing changes of intensity sound level

(Kolarik et al., 2016). The saliency of looming source produced

by increasing intensity sound levels is a hallmark of human

psychoacoustics: participants consistently overestimate the

loudness (Neuhoff, 1998; Ponsot et al., 2015) and speed

(Rosenblum et al., 1987; Schiff & Oldak, 1990) of looming

compared to receding sounds. Physiologically, looming

sounds also elicit stronger orienting response measured by

skin conductance and heart rate changes (Bach et al., 2008;

Bach et al., 2009; Tajadura-Jim�enez et al., 2010), and facilitate

the processing of associated visual stimuli (Leo et al., 2011;

Romei et al., 2009). Finally, brain imaging studies have shown

that looming and receding sounds activate brain areas related

to spatial auditory processing, which include the right tem-

poral plane and the right superior temporal sulcus (Alho et al.,

2014; Seifritz et al., 2002), and that looming sounds activate a

wider network of regions subserving auditory spatial percep-

tion and attention compared to receding sounds, including the

right amygdala and left temporal areas (Bach et al., 2008;

Seifritz et al., 2002). In sum, a wealth of behavioral and brain-

imaging evidence converges to indicate that sound with

increasing intensity function is an elementary warning cue,

able to elicit adaptive responses by recruiting additional

attentional and physiological resources.

Despite all this, event-related potential (ERP) evidence for

the prioritized or amplified processing of looming vs receding

sounds have remained remarkably contrasted. When

comparing changing-level sounds with more frequent

constant-level standards, some studies have documented

earlier and higher mismatch negativity (MMN) for looming

than for receding sounds, which is coherent with the general

pattern of “cognitive amplification” of looming sounds

(Shestopalova et al., 2018); but others have found that MMN

amplitude increase with the magnitude of intensity change

irrespective of direction (Rinne et al., 2006); and several

studies have also reported no differences in MMN latencies or

amplitudes for either looming or receding sounds (Altmann et

al., 2013; N€a€at€anen et al., 1993).

On closer inspection, these different results were obtained

with experimental stimuli which, despite sharing a general

pattern of increasing or decreasing amplitude, actually display

a wide diversity of temporal characteristics (stepwise or

gradual changes, linear or exponential profiles, duration and

onset of level ramp). Psychophysical research has highlighted

that loudness integration in changing-level sounds is not
identically distributed in time, and that perceptiveweights are

biased towards the beginning and end of the sound (Ponsot

et al., 2013). If ERPs reflect such integration, then the latency

and amplitude of the MMN responses may depend heavily on

the morphology of the deviant. In addition, electrophysiolog-

ical research shows that, even inmice, populations of neurons

in the auditory cortices respond to rising or decreasing

intensity-ramps asymmetrically, as the direct result of

neuronal adaptation and non-linearities in their temporal

integration (Deneux et al., 2016). For all these reasons, very

largedifferencesbetween loomingvs recedingMMNresponses

do not necessarily indicate, as often implied in the literature, a

top-down cognitive amplification or prioritization of one type

of sound over the other, but could be the result of the bottom-

up integration of complex temporal profiles in stimuli and

temporal non-linearities in their subsequent processing, i.e. of

the same generic sensory mechanisms that would generate

MMN to e.g. unremarkable constant-level deviants.

To clarify whether and how ERP responses to looming vs

receding sounds coincide with behavioral and imaging evi-

dence of their cognitive amplification, we need away tomodel

sensory contributions of time-varying stimuli to evoked po-

tentials responses, and explore how much these generic

mechanisms explain responses to specifically looming and

receding sounds. To do this, we collected scalp EEG MMN data

in response to deviant stimuli that presented potentially both

dynamic (looming and receding) and constant level (flat) dif-

ferences to the standard in the same participants. We then

combined a model of the auditory periphery with generative

EEG methods (temporal response functions, TRFs) to model

the single-participant MMN and others ERPs responses to flat-

intensity deviants, and used them to predict the effect of the

same mechanism on time-varying looming and receding

stimuli. By comparing actual vs predicted responses, we could

investigate whether and how the ERPs responses to looming

sounds is specific to their arousing or salient nature or, on the

contrary, explained away by generic auditory mechanisms.
2. Methods

2.1. Participants

N ¼ 18 volunteer participants (9 females, Median age ¼ 25

years, Standard deviation SD ¼ 4.9, all right-handed) took part

in the experiment. All participants reported no neurologic or

psychiatric diseases and normal hearing. The experimental

protocol was approved by Institut Europ�een d’Administration

des Affaires (INSEAD)'s Institutional Review Board (protocol

ID: 2021e51), and all participants gave written informed con-

sent before the start of the study. They were financially

compensated for their participation (25 euros/participant). No

part of the study procedures and analyses were pre-registered

prior to the research being conducted. We report how we
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determined our sample size, all data exclusions, all inclusion/

exclusion criteria, whether inclusion/exclusion criteria were

established prior to data analysis, all manipulations, and all

measures in the study.

2.2. Stimuli

1000 Hz pure tones of different time-varying intensities were

generatedwith customPython software. Standard sounds had

a duration of 300 ms, with constant (root-mean-square) RMS

intensity. All three types of deviants (flat, looming and

receding) had a duration of 600 ms (Fig. 1A). Flat deviants had

the same constant RMS-intensity as standards. Looming de-

viants started at the same intensity as flat and standards, but

their RMS-intensity increased linearly by 15 dB over the dura-

tion of 600 ms. Receding deviants started at the maximum

intensity reached by looming deviants, and their RMS-

intensity decreased linearly by 15 dB over the duration of

600 ms.
Fig. 1 e Cortical asymmetries between looming and receding so

collected scalp EEG mismatch negativity (MMN) data in respons

receding) or constant (flat) level differences to the standard, in

profiles for all four types of stimuli. Bottom: simulated auditory

computational model of Zilany et al. (2014). B. We then modele

response and ERP difference wave for flat-intensity deviants (b

them to predict the effect of the samemechanism on other two s

to looming and receding sounds matched the observed differen

explained variance). Top: Grand average of the observed differe

Bottom: Predicted difference waves according to the flat TRFmod

vs predicted flat (top, blue), looming (middle, red), receding (bot

observed between the predicted responses and the observed res

the right lateral cortical surface for observed flat (top), looming (

deviants generated a right anterior temporal source (superior a

source (auditory cortices and planum temporale), again with no s

results evidence that MMN responses to looming and receding

generate MMN responses to unremarkable constant-level devia
2.3. Procedure

We used an MMN oddball paradigm with standard (i.e.,

frequent and repetitive sounds) mixed with deviant (i.e.,

rare and unpredictable) sounds, the deviants being pre-

sented in a random order (N€a€at€anen et al., 1993). The in-

terval between the end of the sound and the beginning of

the next one was set at 600 ms with a jitter of 50 ms.

Standards represented 80% of all sounds, all deviants rep-

resented 20% (i.e., 6.7% of each), corresponding to 1602

standards and 133 deviants of each type. Three blocks of

auditory stimuli were delivered for each participant, each

block including 534 standards and 133 deviant sounds of all

three types, with an inter-block interval duration of 5 min.

Subjects were seated in a comfortable chair, in a quiet

testing room and started to listen to the experiment.

Sounds were presented binaurally over headphones, deliv-

ered by Python software. The participants were naive with

respect to the hypotheses under test. Participants were
unds are explained away by the auditory periphery. A. We

e to deviant stimuli that had either dynamic (looming and

the same participants. Top: waveform and RMS intensity

nerve response for the four types of stimuli, using the

d the transfer function between the simulated auditory

lue) using temporal response functions (TRFs), and used

timuli (red: looming, green: receding). C. Predicted response

ce waves almost perfectly (looming: 45%; receding: 33%

nce waves (deviant minus standard) at the Fz sensor.

el. D. Cluster permutation test at the Fz sensor for observed

tom, green). No statistically significant difference was

ponses for either type of stimuli. E. Sources localization in

middle) and receding (bottom) responses. All three types of

nd middle temporal gyri) and a right posterior temporal

tatistical difference between stimuli. Taken together, these

sounds result from the same cortical mechanism that

nts.
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asked not to pay particular attention to sounds, and to fix

their attention on a relaxing mute video.

2.4. EEG recording

EEG signals were recorded using a 64-channel EEG (acti-

CHamp, Brain Products GmbH, Germany) with a sampling rate

of 1000 Hz. Bandpass was set between .01 and 100 Hz. EEG

sensors were placed according to the 10-10 system (Seeck et

al., 2017) and Cz was set as the reference electrode. Sound

onset triggers were sent to the EEG acquisition computer by a

Cedrus StimTracker (Cedrus Corporation, San Pedro, CA) to

control synchronization between the stimulus presentation

and the appearance of the trigger on the recorded EEG.

2.5. Data pre-processing

Preprocessing and EEG analyses were performed with EEGlab/

Matlab R2022b (Delorme & Makeig, 2004) and replicated with

Python the minimum norm estimate MNE (Gramfort et al.,

2013). First, continuous raw EEG data were low-pass filtered

at 30 Hz and high-pass filtered at .1 Hz. A notch filter was

applied (ParkseMcClellan filter, 50 Hz). Second, these cleaned

data were 1 Hz high-pass filtered to perform the independent

component analysis (ICA). ICAwas performedaccording to the

recommended Makoto Miyakoshi EEGLab-pipeline (Makoto's
preprocessing pipeline (n.d.). Retrieved April 23, 2020, from https://

sccn.ucsd.edu/wiki/Makoto's_preprocessing_pipeline). To

apply ICA weights, continuous raw EEG data were again low-

pass filtered at 30 Hz, high-pass filtered at .1 Hz with a 50 Hz

notch filter. Bad electrodes (defined by an amplitude standard

deviation < 2 mV or >100 mV) were interpolated with the tri-

mOutlier EEGlab plug-in. Data were then cleaned with the

clean_rawdata plug-in. ICA weights obtained at the first step

were then applied to this EEG dataset. The IClabel EEGlab plu-

gin was used to label independent components (among 7 la-

bels: Brain, Muscle, Eye, Heart, Line noise, Channel noise and

Other), and components reflecting eye artifactswere removed.

EEG datawere then re-referenced to the average reference and

we segmented the EEG continuous data into epochs of 900ms,

ranging from �100 to 800 ms relative to sound onset. We

applied a baseline correction for each trial before stimuli onset

(�100 to 0 ms). All artifactual epochs, with voltage changes

exceeding±100 mV,were rejected from the analysis (Delorme&

Makeig, 2004). Two subjects with more than 32% of epochs

rejected were excluded from analysis, leaving 16 participants

in the final analysis.

2.6. Event-related potentials analyses

ERPs of each participant were obtained by averaging sepa-

rately each deviant and the standard stimuli using ERPlab

software(Lopez-Calderon & Luck, 2014). Grand-averages were

performed by averaging epochs for each condition in all par-

ticipants. In this study, MMN responses were obtained from

the difference waveform between deviants and standards

(N€a€at€anen et al., 1993), and compared between our three

deviant conditions (looming, receding and flat). There is am-

biguity in the community about what the termMMN refers to;

for some authors, incl. classic studies by N€a€at€anen et al., 1993,
2011a, 2011b, MMN is defined somewhat agnostically as the

cluster of potentials identified in the difference wave of an

oddball paradigm, regardless of whether they result from the

subtraction of independently-evoked sensory activity (which

may reflect e.g. neural adaptation in the standards), or to the

specific cognitive process of registering change; others only

equate MMN with the latter type of process (considered as

“genuine” deviance detection; May & Tiitinen, 2010), and re-

gard the former as a mere “subtraction artefact” (Fishman,

2014). In this work, we use the expression “MMN-like com-

ponents” to refer to their former definition as components

seen in compatible latency and spatial windows of the dif-

ference wave, without prescribing what underlying cortical

mechanism may generate them. In particular, we do not

imply that such components as “pure” deviance detection

components, nor attempt to isolate such components exper-

imentally by e.g. swapping standards and deviant stimuli in

an inverse oddball block (see discussion for more details). For

each ERP, peak latencies, peak amplitudes and area-under-

curves (AUC) were automatically measured at the Fz sensor,

using EEGlab software (Delorme &Makeig, 2004). For each ERP

component, a mixed analysis of variances (ANOVA) with the

within-subject factor stimulus type (the three types of de-

viants) was calculated. Post-hoc comparisons were made

using independent sample t-test. Differences were considered

significant when p value was <.05. JASP software (JASP Team

(2022), version .16.3) was used for statistical analysis.

2.7. Auditory periphery modelling

In order to model the cortical response to looming, receding

and flat deviant sounds, we used a computational model to

simulate the effect of inner-ear-cell and auditory nerve (AN)

non-linearities on the RMS profile of the three types of sounds.

The model, described in Zilany et al. (2014) and implemented

as a web application at https://urhear.urmc.rochester.edu/

webapps/home/session.html?app¼UR_EAR_2022a is one of

two Auditory Nervemodels to choose from: Zilany et al. (2014)

and Bruce et al. (2018).We used themodel developed by Zilany

et al. (2014) with human parameters for sharpness tuning and

middle ear filter model provided by Bruce et al. (2018). The

Quick Plot functionality, which implements a single-CF

Auditory Nerve model, was used to generate average

discharge rate plots at a single characteristic frequency (CF) of

1000Hz for each of the three deviants.

2.8. TRF analysis

To simulate the extent to which auditory non-linearities could

explain the differential response to time-varying looming and

receding stimuli, we used generative EEG methods (temporal

response functions, TRFs) to model single-participant ERPs

responses to flat-intensity deviants, and used them to predict

the effect of the same mechanism on time varying looming

and receding stimuli. TRFs are impulse response functions

that describe the relationship between the input and the

output of a linear, time-invariant system. TRFs operate under

the assumption that for a stimulus s at time t there exists a

linear convolution with s(t) that results in the output of the

system at that time r(t). For a system with N recording

https://sccn.ucsd.edu/wiki/Makoto&apos;s_preprocessing_pipeline
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channels, we can represent the neural response at time t and a

specific channel n as the sum over all time lags t of the linear

convolution of stimulus characteristic s(t) and the TRF for that

particular channel w(t, n).

rðt;nÞ¼
X

t

wðt;nÞsðt� tÞþ εðt;nÞ (1)

This linear convolution, referred to as the TRF, is estimated

byminimizing themean squared error between the actual and

predicted responses using regularized ridge regression. In this

study, we used the mTRFpy library (Crosse et al., 2016).

For each participant, we modelled the flat response using

the following procedure: first, the AN response to flat sounds

was subtracted by the AN response to standard sounds to get

the stimulus difference (input). Second, all EEG epochs in

which the flat deviant was presentedwere subtracted with the

standard epoch preceding it to get the “flat-standard” EEG

difference wave (output). We then estimated the

inputeoutput TRF by first, doing an exhaustive search for the

best regularization parameter based on their cross-validated

correlation between the predicted and measured response;

and second, using the regularization parameter with greatest

accuracy to build the final model.We obtained a single TRF for

each participant. That TRF was then convoluted with the

looming-standard and receding-standard stimuli to predict

the neural response to the respective sounds (Fig. 2). We ran

temporal cluster permutation tests to test for any significant

differences between the actual and predicted responses.
Fig. 2 e TRF analysis. For each participant, we modelled the flat

nerve (AN) response to flat sounds was subtracted by the AN re

(input). Second, all EEG epochs in which the flat deviant was pre

it to get the “flat-standard” EEG difference wave (output). We th

exhaustive search for the best regularization parameter based

andmeasured response; and second, using the regularization pa

obtained a single TRF for each participant. This TRF was then con

stimuli to predict the ERPs to these respective stimuli.
2.9. Sources localization

The estimation of cortical current source density was per-

formed with Brainstorm (Tadel et al., 2011). EEG electrodes

positions were aligned to the standard Montreal Neurological

Institute (MNI) template brain provided in Brainstorm. The

mean head model was computed with the OpenMEEG

Boundary Element Method for all participants (Gramfort et al.,

2010). A noise covariance matrix was computed for each

participant by taking the 100 ms baseline period of each trial.

For each subject, we computed one sensor-level average per

condition (standard, looming, receding and flat). We then

estimated sources for each average during the time window

[�100; 800 ms] using different methods of standardization:

minimum norm estimate, dynamical Statistical Parametric

Mapping (dSPM; Dale et al., 2000) and standardized Low res-

olution brain Electromagnetic Tomography (sLORETA;

Pascual-Marqui et al., 2002). Source cortical maps were then

compared with permutation paired t-test between the

different types of sounds, in the different time-windows

identified as significant in the grand average, and in ROIs

recognized as of interest for MMN (Alho, 1995).

2.10. Transparency and Openness (TOP) statement

All anonymized data and digital materials necessary and

sufficient to reproduce analyses are accessible at https://osf.

io/wjsbf/, https://osf.io/5et62/ and https://osf.io/qfv5y/.
response using the following procedure: first, the auditory

sponse to standard sounds to get the stimulus difference

sented were subtracted with the standard epoch preceding

en estimated the inputeoutput TRF by first, doing an

on their cross-validated correlation between the predicted

rameter with greatest accuracy to build the final model. We

voluted with the looming-standard and receding-standard
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3. Results

3.1. Event related potentials

We recorded 64-channel EEG from a sample of N ¼ 18 partic-

ipants (9 females, median age ¼ 25 years old) while they were

presented a 30-min sequence of frequent pure tones (1000 Hz,

300 ms) with constant-intensity combined with rare deviants

that were both longer (600ms) and had either constant (flat) or

dynamically changing intensity (looming and receding;

Fig. 1A).

At the scalp level, difference-waves between deviant and

standard sounds showed a striking succession of “MMN-like”

negative deflections, which extended approximatively 170ms,

450 ms and 600 ms after stimulus onset (Fig. 1C). The first

peak, which corresponded to a fronto-central midline distri-

bution with maximum negativity at Fz (Fig. 1 Suppl. Material),

was compatible with a MMN due to the initial dynamic dif-

ference between stimuli. Compared to receding, looming eli-

cited a later difference-wave peak latency (206.5 vs 175.5 ms,

p ¼ .022) with a wider area under curve (AUC: .116 vs .053,

p ¼ .002) (Table 1). Expectedly, there was no such peak for flat

deviants, which did not differ from standards in that time

range. Because the initial intensity of looming soundswere set

equal to both standards and flat deviants, this MMN-like dif-

ference-wave component was not trivially explained by in-

tensity differences at the onset, but rather translates the

specific temporal dynamics of the looming and receding

stimuli. The second peak, elicited between 400 and 500 ms -

thus about 150 ms after the end of standard sounds, was

compatible with a response to the end of standard sounds and

not with a MMN. It did not correspond to any visible compo-

nent in the individual deviant waves (Fig. 2 Suppl. Material),

and plausibly resulted from the cessation of the sustained

potential evoked by the standard. Correspondingly, it

occurred in a similar manner in all three types of deviants,

with no statistical difference in either evoked responses

characteristics (peak amplitudes, peak latencies and AUC) or

surface amplitude maps. We do not further discuss it here.
Table 1 e Comparison of peak amplitudes, peak latencies and a
“late” components, according to the looming, receding and flat co

Conditions looming receding Flat

Early component (150e250 ms)

Peak amplitude (mV, SD) 1.24 (.46) 1.40 (.98) .21 (.44)

Peak latency (ms, SD) 206.5 (29) 175.5 (28) NA

AUC (SD) .116 (.063) .053 (.063) NA

Second component (400e500 ms)

Peak amplitude (mV, SD) 2.55 (.98) 2.50 (1.3) 2.59 (1.4)

Peak latency (ms, SD) 442.8 (18) 445.4 (16) 440.8 (17)

AUC (SD) .315 (.17) .308 (.21) .285 (.22)

Late component (550e650 ms)

Peak amplitude(mV, SD) 1.96 (1.2) 1.61 (1.2) 1.43 (1.33)

Peak latency (ms, SD) 602 (24) 599 (22.4) 618 (17.6)

AUC (SD) .263 (.21) .197 (.19) .181 (.23)

Measures of peak amplitudes, peak latencies and AUC were performed a
a indicate the significant difference with the p value, all other statistical c

milliseconds.
Finally, all three types of deviants elicited a late negative

component between 550 and 650 ms which, presented a

fronto-central distribution with maximum negativity at Fz

(Fig. 1 Suppl. Material). Contrary to the second component,

components in the 550e650 ms time window were all clearly

visible in the deviant waves, while the standard response re-

mains relatively steady from 500 to 800 ms (Fig. 2 Suppl.

Material). This late component also largely differentiated

looming and receding sounds from flat sounds both in terms

of peak amplitude, which was higher for looming (�1.96 mV)

than flat (�1.43 mV, p¼ .01); peak latency,whichwas earlier for

receding (599 ms) and looming (602 ms) than flat (618 ms,

p ¼ .03); and AUC, wider for looming (.263) than receding (.197,

p ¼ .05) and flat (.181, p ¼ .023) (Fig. 1C and Table 1). In sum, at

the scalp level, looming sounds displayed a clear pattern of

amplification of MMN-like responses in the difference wave,

with wider responses in the range 150e250ms and earlier and

more intense responses in the range 550e650ms. This pattern

of result was consistent with other examples of looming

amplification both in behavior (Neuhoff et al., 1998 (Neuhoff,

1998)), brain imaging (Seifritz et al., 2002) and electrophysi-

ology (Shestopalova et al., 2018).

3.2. TRF model

To tease apart bottom-up auditory components from more

specific top-down contributions in the response to looming

and receding sounds, we then used generative EEG methods

(temporal response functions, TRFs) to measure the extent to

which the latter can be predicted from the former. First, we

used a computational model of the auditory periphery (Zilany

et al., 2014) to simulate the nonlinearities (i.e. loudness

compression, temporal integration, onset and offset amplifi-

cation) observed at the level of the auditory nerve, and how

these affect the root-mean-square (RMS) profile of flat, loom-

ing and receding stimuli (Fig. 1A). We then used TRFs tomodel

each participant's ERPs to the output of this auditorymodel for

flat-intensity deviants. TRFs provide an approximation of the

mapping between incoming stimuli (here, the difference wave

between the peripheral encoding of flat deviants minus
rea under curves (AUC) for the three “early” “second” and
nditions.

Looming vs receding
mean difference

Looming vs flat
mean difference

Receding vs flat
mean difference

.16 p ¼ .4 NA NA

31a p ¼ .022 NA NA

.063a p ¼ .002 NA NA

.05 .04 .09

2.6 2 4.6

.007 .03 .023

.35 .53a p ¼ .01 .18

.03 16a p ¼ .03 19a p ¼ .03

.066a p ¼ .05 .082a p ¼ .023 .016

t the level of Fz sensor.

omparison being not statistically significant. NA: not assessable; ms:
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standards) and the output EEG using a simple linear, time-

invariant model represented by an impulse response (Crosse

et al., 2016). Here, we trained a separate TRF for each indi-

vidual participant that predicts the participant's ERPs to flat

deviants (Fig. 1B). The predicted response closely matched the

observed response (80% explained variance; Fig. 1D), and thus

provided an accurate model of the cortical response to a

simple change of stimulus duration, at constant level. Finally,

we used that flat-deviant model to simulate the extent to

which bottom-up auditory mechanisms could explain the

response to time-varying looming and receding stimuli (Fig. 2).

To do so, for each participant, we convoluted the TRF trained

on their flat response with the non-linear peripheral encoding

of the two other types of deviants (looming and receding).

Strikingly, both predicted responses almost perfectlymatched

the observed response (Fig. 1D): in particular, predicted

looming responses exhibited the same pattern than seen in

actual responses, i.e., a later/wider peak in the 150e250 ms

range, and an earlier/larger peak in the 550e650 ms range. We

tested for statistical differences between the predicted and

observed responses across participants using cluster-based

permutation test, and neither was significant. The flat model

explained 45% variance of the looming response, and 33% of

the receding response. These figures are in the higher end of

encoding accuracies usually reported for EEG TRF studies

(Bednar & Lalor, 2020; de Cheveign�e et al., 2018).

3.3. Sources localization

Finally, we extracted cortical current source densities in the

150e250 ms and 550e650 ms time windows, and checked for

significant differences between the three deviants. All three

types of deviants generated a right anterior temporal source

(superior andmiddle temporal gyri), a right posterior temporal

source (auditory cortices and planum temporale) and to a lesser

extend a right prefrontal cortex source (Fig. 1E). We also high-

lighted a left inferior temporal gyrus source (Fig. 3 Suppl.

Material). None of them differed statistically, suggesting that

they were generated by a close mechanism (Fig. 4 Suppl.

Material).
4. Discussion

Our results show that the large differences between cortical

responses to looming and receding sounds exhibited at the

scalp-level are in fact almost entirely explained away by non-

linear encoding at the level of the auditory periphery. These

cortical responses to looming and receding sounds result from

the same cortical mechanism that generate MMN responses

(i.e., at 150e250 ms) and later evoked potentials (i.e., at

550e650 ms) to unremarkable flat-level deviants. In other

words, there is nothing cortex specific in the processing of

looming sounds up to the level of the MMN response: all dif-

ferences observed in MMN are the sole consequence of their

particular physical morphology getting amplified and inte-

grated by peripheral auditory mechanisms.

The sharp contrast seen here between the visually-salient

scalp-level effects and their unassuming explanation by early

peripheral differences should provide a sobering reminder
that not all cortical effects, even in relatively late time-

windows such as seen here, proceed from top-down modu-

lations by high-level decision variables, such as a stimulus’

supposed physical, affective or social relevance. Rather, a lot

of such differential amplification observed at the level of the

cortex is in fact performed early and efficiently by feed-

forward peripheral mechanisms that evolved precisely for

the purpose of sparing subsequent networks with the neces-

sity to implement such mechanisms. Our results are

congruent with some other ERPs and MMN studies, high-

lighting that MMN may involve automatic activation of low-

level feature detectors (or early stages of auditory process-

ing) rather than higher level attention-dependent processing

(Bishop et al., 2005). Our results also suggested that when a

target has a greater magnitude of activation (here, looming

and receding compared to flat sounds), it is detected more

easily as previously demonstrated (Cusack & Carlyon,

2003).This perceptual asymmetry effect (observed here with

sounds intensity modification) is also largely observed with

speech sounds, MMN being sensitive to phonological and

phonetic contrasts (Højlund et al., 2018; Scharinger et al., 2010;

Scharinger et al., 2012). This effect was also observed in the

visual system. Indeed, human subjects detect a change more

easily when a feature is added than when a feature is deleted,

suggesting that these perceptual asymmetries concern

several sensory functions (Treisman & Gormican, 1988;

Cusack & Carlyon, 2003; Treisman & Gormican, 1988).

Our study presents some strengths. First, this is the first

study that used a generative EEG methods TRFs to model

single-participant evoked potentials responses to flat-

intensity deviants, and used them to predict the effect of the

same mechanism on time varying looming and receding

stimuli. Some studies have already assessed looming or

receding in an MMN oddball paradigm and have highlighted

some differences in amplitudes between conditions

(Shestopalova et al., 2018), but none have attempted to

differentiate the sensory vs. cognitive mechanisms for the

integration of these stimuli. We also assessed the cortical

current source densities for each type of deviants, and found

consistent results with results of the TRF model.

Our study also presented some limitations. First, we only

used a linear TRFmodel. Because this convolution technique is

apt for linear systems, and as neural MMN system is probably

highly non-linear, we could not exclude that this TRF model

was not perfectly appropriate. Because we used a computa-

tional model to simulate the effect of inner-ear-cell and audi-

tory nerve (AN) non-linearities on the RMS profile of the three

types of sounds, it is possible that this procedure allowed us to

simulate non-linearities that are entailed not only by the

auditory periphery, but also by the cortical MMN system.

Future work could attempt to model specifically-cortical non-

linearities in a data-driven way, as done e.g. in Deneux et al.

(2016). Second, in all our analyses, we identified MMN-like

components in the simple difference wave between standard

and deviant sounds, but did not attempt to control empirically

for whether such components correspond to “genuine” devi-

ance detection, e.g. by swapping deviant and standard stimuli.

Thus, We only used the oddball paradigm described by

N€a€at€anen et al. to elicit an MMN, and we did not swapped the

roles of deviant and standard sounds in a reversed oddball

https://doi.org/10.1016/j.cortex.2024.05.018
https://doi.org/10.1016/j.cortex.2024.05.018


c o r t e x 1 7 7 ( 2 0 2 4 ) 3 2 1e3 2 9328
block (see e.g. Althen et al., 2011). Doing so, we cannot rule out

that some of the components evidenced here result from

confounding physical differences between stimuli (as is trivi-

ally the case for the component seen at 450 ms) and, more

generally, to lower-level explanations, such as differential N1

adaptation. Crucially though, such explanations still require

accounting for the subtle ways in which the complexity of

temporal stimuli translate into variations in the amplitude,

latency, and morphology of ERPs produced by auditory gener-

ators e all mechanisms which, in fact, implicitly represent an

index of the salience of stimulus representations in the brain

(Fishman, 2014). Thus, regardless of their underlying mecha-

nisms (explicit deviance detection, or encoding of stimulus

features which are implicitly sensitive to salience), the early

and late MMN-like components studied here reflect a cortical

index that is sensitive to the specific dynamics of looming or

receding stimuli, and which is associated with feed-forward

peripheral (bottom-up) mechanisms rather than top-down

ones.
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