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Abstract

Recent deep-learning techniques have made it possible to manipulate facial expressions in

digital photographs or videos, however, these techniques still lack fine and personalized

ways to control their creation. Moreover, current technologies are highly dependent on large

labeled databases, which limits the range and complexity of expressions that can be mod-

eled. Thus, these technologies cannot deal with non-basic emotions. In this paper, we pro-

pose a novel interdisciplinary approach combining the Generative Adversarial Network

(GAN) with a technique inspired by cognitive sciences, psychophysical reverse correlation.

Reverse correlation is a data-driven method able to extract an observer’s ‘mental represen-

tation’ of what a given facial expression should look like. Our approach can generate 1) per-

sonalized facial expression prototypes, 2) of basic emotions, and non-basic emotions that

are not available in existing databases, and 3) without the need for expertise. Personalized

prototypes obtained with reverse correlation can then be applied to manipulate facial

expressions. In addition, our system challenges the universality of facial expression proto-

types by proposing the concepts of dominant and complementary action units to describe

facial expression prototypes. The evaluations we conducted on a limited number of emo-

tions validate the effectiveness of our proposed method. The code is available at https://

github.com/yansen0508/Mental-Deep-Reverse-Engineering.

1 Introduction

Facial expression manipulation (FEM) is an image-to-image translation technique that aims to

automatically edit face photographs of real humans to change their appearance [1, 2]. With the

recent development of deep learning methods [3–6], FEM techniques have become highly real-

istic and attracted increasing attention in the media and general public, such as the ubiquitous

face filters in TikTok, Instagram, and Zoom and the computer graphic animations in movies

and video games.

However, most FEM techniques have three weaknesses. Lack of fine control. For most

FEM-based systems, the smallest editable components of manipulation are the global attri-

butes, such as emotion labels [4, 5]. Although these systems can synthesize different types of

facial expressions, the facial expression prototype of each emotion is often unique. What if an

AI system is required to generate a happy face only with “smiling” eyes while the other areas of
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the face remain neutral? These FEM techniques are unable to handle such tasks. Lack of ability

to be personalized. Most FEM-based systems are based on the emotional prototypes defined

by Ekman et al., which are supposed to be universally perceived by humans [7, 8]. However,

the universality of Ekman’s prototypes is now being challenged by a growing number of psy-

chologists [9–11]. Indeed, facial expression prototypes should be diverse among different peo-

ple. Yet, there is no FEM-based application that can generate their personal facial expressions.

Lack of variety. As research in psychology covers, there are more than 4000 labels of emotions

[12]. Due to the limitation of large and reliable labeled data for training, most AI tools can

only deal with Ekman’s basic emotions, i.e., happiness, anger, sadness, surprise, fear, and dis-

gust [13]. Non-basic emotion labels, such as self-confidence, are not explicitly available in

existing databases. In addition to the lack of large labeled data, creating such a database with

various emotion labels comes with many concerns: 1) time-consuming for the annotation and

2) requiring expertise (e.g., certified FACS coders [13]) for some labeling tasks.

1.1 Requirements

To address more critical domains, such as psychotherapy or the service industry, AI applica-

tions should describe, understand or detect more emotions in real life. For instance, one can

imagine training to express self-confidence before a job interview or dealing with anxiety in a

therapeutic context [14]. Thus the FEM-based process needs to adapt to more various and

fine-grained requirements.

• Flexibility. The process should be capable of personalizing facial expressions for observers.

That is, generating the desired expression that meets the need of the observer. As in most lit-

erature, we refer to the person whose face is being manipulated as an “actor”, and to the per-

son supervising/designing the manipulation as an “observer”. In case they want to

personalize their own facial appearance, the actor and the observer can be the same person.

• Exhaustiveness. The process should be applicable to any expressions, and not limited to

basic facial expressions. This can be complex emotions or social attitudes (e.g., self-confi-

dence) as well as more general expressions (e.g., how do you want to be seen during your job

interview?).

• Expertise-free. The process should be controllable by any observers in a precise and consis-

tent manner without the need for expert knowledge (e.g., FACS-certified coders, and knowl-

edge in affective computing).

1.2 Contribution

In this paper, we propose a novel interdisciplinary approach (see Fig 1) to personalize facial

expressions by combining Generative Adversarial Networks (GANs) [15] with a technique

inspired by the cognitive sciences, psychophysical reverse correlation [16, 17]. Reverse correla-

tion is both an experimental procedure and an analysis technique able to extract facial proto-

types, or ‘mental representations’ of any given desired facial expression from the observer. In

other terms, our approach identifies which attributes need to be modified to better fulfill the

need of the observer, resulting in the generation of personalized facial expressions. This can

meet the requirement of Flexibility.

Differing from typical GANs that can manipulate facial expressions, our approach has the

following strengths.

• Exhaustiveness. One can address any emotion or social attitude, with no need to build a

dedicated training database for each emotion or social attitude. Rather, we use local attribute
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Catherine Soladié, Jean-Julien Aucouturier, and

Renaud Seguier), and European Research Council

(ERC) PoC ACTIVATE 875212 and Fondation Pour

l’Audition FPA RD-2018-2 (https://erc.europa.eu/

homepage, to Jean-Julien Aucouturier). The

funders had no role in study design, data collection

and analysis, decision to publish, or preparation of

the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0290612
https://anr.fr/
https://erc.europa.eu/homepage
https://erc.europa.eu/homepage


to manipulate facial expressions, which can cover a wide range of local facial movements, in

order to reproduce the observer’s prototype, regardless of what the prototype’s target expres-

sion is.

• Expertise-free. No expert knowledge in affective computing or certified FACS coder [13]) is

needed to create the personalized prototype since our approach only requires the observer’s

perception (i.e., subjective judgment) rather than the observer’s expertise.

Conversely, differing from typical reverse correlation approaches which use 3D virtual ava-

tars [18], using FEM techniques (such as GANs) allows manipulating real faces (2D pictures),

thus providing an easier and more intuitive way to edit facial expressions. In detail, we use the

same tool (GAN, for instance) twice: first, to generate experimental stimuli for the reverse cor-

relation procedure, and then to apply the resulting prototype for the manipulation. This can

ensure that the manipulation is consistent with the mental representation of the observer.

Finally, the mental prototype extracted in the intermediate step (i.e., reverse correlation

procedure) does not especially fit any so-called universal prototype. It is specific to the

observer. To enhance the definition of facial expression prototypes, we introduce below the

concept of dominant and complementary action units to precisely describe facial expression

prototypes.

1.3 Related work

Here, we briefly review the facial expression manipulation techniques (FEM) from computer

science, and the reverse correlation procedure from cognitive science.

1.3.1 Facial expression manipulation. Generative Adversarial Networks (GANs) [1, 2,

15] have achieved a series of impressive results in image-to-image translation tasks. This tech-

nique has widely spread to diverse domains such as art [19], medical research [20], and enter-

tainment [21, 22]. The inputs of the model are usually a face image and a set of control

parameters. The output is a new face image. According to the control parameters for manipu-

lation, the manipulation can be divided into two categories: global attribute manipulation and

local attribute manipulation.

Fig 1. The framework of our approach to personalize facial expressions. We combine the recent deep learning

technique, i.e., Generative Adversarial Network (highlighted in blue), with psychophysical reverse correlation, a

recently emerging technique from the cognitive sciences (highlighted in green). We employ the same GAN to extract

personalized control parameters (i.e., mental representation) and to personalize facial expressions.

https://doi.org/10.1371/journal.pone.0290612.g001
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Preamble. In detail, global attribute manipulation involves altering the overall appearance

of the face. These attributes encompass aspects such as gender, age, face shape, face structure

[6, 23, 24], and emotion [4, 25, 26]. On the other hand, local attributes are specific features or

localized regions that can be individually modified to alter the facial appearance. These attri-

butes focus on fine-grained details and localized features, such as hairstyle, presence of facial

hair (beard, mustache), presence of accessories (glasses, earrings) [6, 23, 24], specific facial

components (e.g., mouth shape [27–29], cheek, and eyebrows [29]) and facial muscles [3, 18].

These attributes usually do not alter the entire facial structure and identity.

As one of the representative models, the StyleGAN family (StyleGAN [6], StyleGAN2 [23],

StyleGAN3 [24]) provided state-of-the-art architectures to generate high-resolution and more

realistic faces. These models were able to manipulate not only global attributes such as gender,

age, skin, face shape, and bone structure but also local attributes such as hairstyle, beard, mus-

tache, and wearing accessories. Moreover, some StyleGAN-based models achieved editing

photo-related features (global attributes) such as rotating, lighting, and super-resolution [21, 22].

However, all of these mentioned approaches [6, 21–24] are face-based. They do not con-

tribute to facial expression manipulation (FEM) since these approaches edit neither the global

attributes such as emotions nor the local attributes such as specific facial components (eye-

brows, eyelids, nose, etc.) and facial muscles. On the premise of FEM, we focus on the global

attribute manipulation that edits the overall expressions such as emotions, and the local attri-

bute manipulation that edits specific facial components and facial muscles.

Global attribute manipulation. As a representative FEM task, face reenactment mainly aims

at animating facial expressions from the source video to the target video [30–34]. As a result,

the entire facial expressions (global attributes) are copied from the source video to the target

video. The other attributes that are not related to the facial expression such as gender, age, face

shape, face structure (global attributes), and hairstyle, beard, accessories (local attributes) are

totally the same as the target video. In this task, the Face2Face model [31] and the dual-genera-

tor-based approach [32] use 3D landmarks to encode head pose, face shape, and facial expres-

sions, and approaches such as ReenactGAN [33] and FReeNet [34] use 2D facial landmarks.

Differing from face reenactment that directly copies facial expressions, the following

approaches aim at editing the overall expressions. StarGAN [4] proposed a unified model that

transfers real faces from one of the six basic emotions to another. G2-GAN [25] employed the

overall facial geometry as controllable parameters to synthesize the six basic emotions. By

modeling the motion of facial landmarks as curves encoded as points on a hypersphere,

Otberdout et al. [26] proposed an approach that generated the six basic emotions from a given

neutral face.

Although the purpose of these mentioned approaches is generating realistic facial expres-

sions, manipulating global attributes for FEM can not fulfill the aforementioned requirements

(see Subsection Requirements). Flexibility: For a given emotion, the prototypes of this emo-

tion can be limited by the database. For instance, if all the happy faces in the database have lip

corners raised and mouths opened, the model cannot generate a happy face with lip corners

raised but with mouth closed. Exhaustiveness: Due to the limitation of the database that only

a few emotion labels are available, these FEM models [4, 25, 26] that directly controlled global

attributes (such as emotion labels and overall facial landmarks) can only deal with limited

emotion categories such as the six basic emotions of Ekman. However, the reality is that there

are already more than 4000 emotional labels [12].

Local attribute manipulation. Otberdout et al [29] proposed an approach both modeling the

temporal dynamics of expressions and deforming the neutral mesh to obtain the expressive

counterpart. This approach achieved dynamically generating different local facial movements

mostly around the mouth (e.g., bare teeth, high smile, lips up, mouth down, mouth extreme,
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mouth open). Zaied et al [27, 28] proposed geometric and geometric-machine learning meth-

ods mainly to personalize smiles. However, these approaches [27–29] mainly manipulate the

region around the mouth. Departing from these approaches, GANimation [3] can generate

anatomically-aware face animation by taking a list of action units (AUs) as input. AUs [13],

proposed by the psychologist Paul Ekman, are defined by the contraction or relaxation of one

or some muscles. Differing from the emotion labels (i.e., global attributes) that require human

interpretation [11], these local attributes are objective. They only contain local anatomical

information about the face and can be used in combination to describe facial expressions. For

instance, the prototype of happiness (proposed by Ekman) [13] is the combination of AU6

(cheek raiser) and AU12 (lip corner puller). These local attributes (i.e., AUs) involve vast facial

areas such as eyebrows, eyelids, cheek, nose, mouth, and jaw. For more information, see S1

Appendix in supporting information.

In this paper, we chose GANimation [3] as a tool to synthesize facial expressions by control-

ling local attributes (i.e., AUs). Compared to editing global attributes such as emotions of the

face, editing AUs (i.e., local attributes) can achieve fine-grained control and thus have the

potential to personalize facial expressions that meet different needs of different observers. This

has the potential to fulfill the requirement of Flexibility. Even though GANimation [3] can

generate various facial expressions by combining different AUs, it lacks the ability to deter-

mine which AUs should be activated to generate the desired facial expressions that are not

explicitly available in the existing database. This limitation arises from the need for expert

knowledge to identify the appropriate AUs for generating the desired facial expression. This

cannot meet the requirements of Exhaustiveness and Expertise-free. To the best of our

knowledge, GANimation is the appropriate tool for the moment, but it can be replaced in the

future by other state-of-the-art tools that manipulate local attributes.

1.3.2 Reverse correlation. The reverse correlation process is a powerful data-driven

method widely used in the field of cognitive science to extract mental representations of

observers (or called participants). Based on observers’ judgments of a large quantity of ran-

domly-varied stimuli, reverse correlation is able to reverse-engineer what perceptual represen-

tations subtend these judgments [17]. This can help researchers to identify the neural

mechanisms and processing strategies involved in perception. This process is widely employed

to study the perception of faces [10, 18, 35, 36], speech [37–39] and bodies [40, 41]. Note that

the works [40, 41] use reverse correlation to understand how humans identify gender via bod-

ies, and the work [35] focuses more on identity, gender, with/without expression via faces.

These works are far from the research on facial expressions.

In an influential example, Jack et al. [10] randomly generated 4800 trials (i.e., stimuli gener-

ation). Each trial consists of one dynamic facial animation (called stimuli) created by the 3D

morphing tool of [18]. 15 Western Caucasian and 15 East Asian observers were asked to cate-

gorize the random animations into six basic emotion categories (i.e., perceptual experiment).

The authors then used reverse correlation to extract one mental representation of each emo-

tion for each cultural group ((i.e., mental representation computation)) and conclude that

these representations were, in fact, not culturally universal. This work can in principle produce

control parameters for its generative model, i.e., generate a 3D synthetic face that maximizes

the probability that a given observer judges it representative of one of the tested emotion

categories.

As aforementioned, we choose GANimation [3] as a tool to edit AUs (local attributes) thus

flexibly altering facial expressions. This can fulfill the first requirements (see Requirements),

yet the second and the third requirement (i.e., Exhaustiveness and Expertise-free) cannot be

addressed. In order to fulfill all requirements, we can use reverse correlation process to obtain

the mental prototype exclusively for the observer. According to the mental prototype, the
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system can identify which AUs need to be activated to generate facial expressions exclusively

for the observer (i.e., personalized). The entire reverse correlation process does not rely on

expert knowledge (such as FACS [13], psychology) since reverse correlation requires only the

observer’s perception (i.e., subjective judgment on the stimuli).

To sum up, we propose a novel interdisciplinary approach by combining the reverse corre-

lation process with GANimation to fulfill all the aforementioned requirements: Flexibility,

Exhaustiveness, and Expertise-free. As shown in Fig 1, GANimation can randomly generate

arbitrary stimuli by editing different AUs (local attributes). By adopting reverse correlation

process, the mental prototype of the observer (a vector of AUs) can be extracted. This proto-

type can be regarded as the control parameter of GANimation and finally, GANimation syn-

thesizes the personalized facial expression of the observer.

2 Method

Our approach is composed of four successive steps (in Fig 1). In the first step (Stimuli genera-

tion), based on the real face of an actor, a generative model (denoted by GAN) is applied to

synthesize a large number of arbitrary facial expressions (i.e., reverse-correlation stimuli).

Then (in Perceptual experiment), the observer performs a perceptual experiment of reverse

correlation in which the input is the generated stimuli. Next (in Mental representation compu-

tation), based on the responses of the observer, we compute the dominant AU and the comple-

mentary AUs and then construct the mental representation (i.e., personalized control

parameters). And (in Personalized manipulation), according to the mental representation, we

employ the same generative model (i.e., GAN) to generate the personalized facial expression

that meets the observer’s expectation. At the end (in Experiment setting), we detail the setting

in terms of implementation and experiment.

2.1 Stimuli generation

To generate input stimuli (random facial expressions) for reverse correlation, we can employ

any tool that can control objective local attributes. Here, we choose GANimation [3] con-

trolled by facial action units (AUs) [13] to synthesize random facial expressions (i.e., reverse-

correlation stimuli). In this step, GANimation takes as input an image of the actor’s face (e.g.

captured with an emotionally neutral expression) and a vector of AUs to create a deformed

face (i.e., stimulus).

In terms of the vector of AUs, GANimation is capable of manipulating 16 AUs by activating

or deactivating the corresponding AU. While simultaneously activating too many AUs typi-

cally will create visual artifacts. Therefore, we generate stimuli by only activating 3 AUs. Com-

bining 3 out of 16 AUs, there can be C3
16
¼ 560 possible AU vectors, where C is the

mathematical combination function. For more details about GANimation, please see the liter-

ature [3] and S1 Appendix.

2.2 Perceptual experiment

The second step of our approach is the perceptual experiment. For each perceptual experi-

ment, observers perform m trials. In each trial of the perceptual experiment, a pair of randomly

generated stimuli is presented to the observer. Each pair of randomly generated stimuli is dis-

played only once. The observer is asked to choose which stimulus of the given pair best corre-

sponds to the target expression (e.g., “which of these two faces looks happier?”). Note that for

one trial, if we randomly select a pair of 3 AU-activated stimuli, there are C2
560
� 1:56� 105
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possible combinations. For each perceptual experiment, the set of m trials is randomly selected

from the C2
560
� 1:56� 105 trials.

2.3 Mental representation computation

Here, we obtain the mental representations by a two-step computation: dominant action unit

computation and complementary action units computation. The purpose of the dominant

action unit computation is to determine which action unit has a significant effect on the per-

ception of the observer. We then determine the complementary action units, i.e., in combina-

tion with the dominant action unit, which action units also drive the perception of the

observer.

We’ll use mathematical notation to avoid any ambiguity. To this end, we define O as all the

trials within a perceptual experiment, where |O| = m. Note that in this paper, |.| represents the

cardinality of the set. According to the activation or deactivation of a given action unit AUi (i
is the subscript number of AU), each perceptual experiment O can be divided into three

subsets.

• O{i*}: the subset of trials in which one of the paired stimuli has AUi activated and another

one has AUi deactivated.

• O{i}: the subset of trials in which both stimuli have AUi activated.

• Of�ig: the subset of trials in which both stimuli have AUi deactivated.

Dominant action unit computation. We first define ZOfi∗g as the set of stimuli selected by

the observer from the subset O{i*}, and Fi as the set of all stimuli in which AUi is activated. We

then count P(i|O{i*}) the proportion of the selected stimuli that have AUi activated in the subset

O{i*}, i.e., how likely an activated AUi is to drive the observer’s perception.

PðijOfi∗gÞ ¼
jZOfi∗g \ Fij

jZOfi∗g j
ð1Þ

Finally, we can determine the action unit AUi with the largest proportion P(i|O{i*}) as the

dominant action unit denoted by AUd. d is the subscript number of dominant AU.

d ¼ arg max
i

PðijOfi∗gÞ ð2Þ

Complementary action units computation. Similar to the definition of O{i}, we specify

O{d} as the subset of trials where both stimuli have dominant AUd activated. We continue to

divide subset O{d} into three subsets according to the activation status of the non-dominant

AU (denoted by AUj, where j is the subscript number of AU).

• O{d,j*}: under the premise that each pair of stimuli has AUd (the dominant action unit) acti-

vated, the subset of trials in which one of the paired stimuli has AUj activated and another

one has AUj deactivated.

• O{d,j}: under the premise that each pair of stimuli has AUd (the dominant action unit) acti-

vated, the subset of trials in which each pair of stimuli has AUi activated.

• Ofd;�jg: under the premise that each pair of stimuli has AUd (the dominant action unit) acti-

vated, the subset of trials in which each pair of stimuli has AUi deactivated.

Since previously the dominant action unit has been determined, the complementary action

units can not be the dominant one (i.e., 8AUj 6¼ AUd). We define ZOfd;j∗g as the set of stimuli
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selected by the observer from the subset O{d,j*}, and Fj as the set of all stimuli in which AUj is

activated. We compute P(j|O{d,j*}) the proportion of selected stimuli in subsetO{d,j*} that have

AUj activated, i.e. how likely the addition of AUj to dominant AUd is to drive the observer’s

perception.

PðjjOfd;j∗gÞ ¼
jZOfd;j∗g \ Fjj

jZOfd;j∗g j
ð3Þ

In practice, we limit the number of complementary action units by introducing a threshold Tq

(to separate complementary AUs and non-complementary AUs).

C ¼ fjjPðjjOfd;j∗gÞ � Tqg ð4Þ

Note that C is the set of all the subscript numbers of complementary AUs.

The output of this step is the mental representation (i.e., personalized control parameters

for facial expression manipulation). We construct the mental representation of the observer

(as aforementioned in Stimuli generation, a 16-dimensional binary AUs) by activating the

dominant action unit and all the complementary action units.

2.4 Personalized manipulation

Once the mental representation of the observer is extracted, we apply personalized manipula-

tion on each frame. To be consistent with the mental representation and the final manipula-

tion, we employ the same tool (GANimation [3]) for the stimuli generation and the

personalized manipulation. To make the video compatible with GANimation (especially with

the dimension of the face), we crop, align and resize the face of the actor in each frame.

2.5 Experiment setting

Implementation: GANimation model. We choose GANimation [3] as the tool to generate

facial expressions by editing local attributes, namely action units (AUs) [13]. We use the code

of GANimation released by its authors. All settings are unchanged. The input image and the

output image are 148px × 148px. To crop, align, and resize the face, we employ OpenFace [42].

Implementation: Mental representation computation. As aforementioned, we determine

a dominant AU for one emotion as the action unit that dominantly drives the observer’s per-

ception. For the complementary AUs, we need to determine which AUs combined with the

dominant AU have a significant effect on driving the observer’s perception. Therefore, we

need to set a relatively high threshold Tq to eliminate most AUs with less significant propor-

tions P(j|O{d,j*}). Indeed, Tq = 50% corresponds to the situation in which, among each pair of

AUd-activated stimuli, the observer selects as many AUj-activated stimuli as AUj-deactivated

stimuli. This means that AUj carries no information content for this experimental task. To

identify which AU is activated that positively influences the perception of the observer, the

threshold Tq should be significantly higher than 50%. Considering that state-of-the-art proto-

types [13, 18] have 2 to 5 AUs activated, to align with state-of-the-art prototypes, we manually

set the threshold Tq to 80% for happiness, sadness and anger and 70% for self-confidence.

Thus all the personalized prototypes can have 2 to 5 AUs activated.

Experimental protocol: Observers. Four observers (one female) participated (in October

2021) in the perceptual experiment, all relatively young (mean = 27.7yo) adults of three cul-

tural groups: Brazil (1), China (2), and France (1), respectively denoted by observers #1 to #4.

Only one observer had experience in affective computing, and nobody is a certified coder in
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Facial Action Coding System [13] or a psychologist. Each observer signed informed consent,

and the experimental data were anonymous.

Experimental protocol: Perceptual experiment. The perceptual experiment aims to illus-

trate that our approach can personalize the facial expressions of a given emotion, even though

this emotion is not available in existing deep-learning databases. Note that the purpose of the

perceptual experiment is not to give extensive results or to discuss facial expression prototypes.

We chose three basic emotions (happiness, sadness, and anger) that existed in deep-learning

databases and one non-basic emotion (self-confidence) that is not explicitly available in exist-

ing deep-learning databases. Each of the four observers participated in four different experi-

mental tasks to extract his/her mental representation of happiness, sadness, anger, and self-

confidence. In related work using reverse correlation [10, 36, 37, 39], the average number of

trials for the perceptual experiment of one emotion varies from 700 to 1800. For each experi-

mental task, we decided that observers performed m = 840 trials. The question was fixed and

unique, e.g., “Which of these two faces looks happier?” The order of the four experimental

tasks was counterbalanced among observers, and all experimental tasks used the same actor’s

photograph. It took about 40 to 60 minutes for one observer to complete a task. The time inter-

val between experimental tasks was set to half a day. All experiments were conducted in a quiet

room in the lab, using a custom computer graphic interface implemented in PsychoPy.

Ethics statement. Our work does not require an ethics statement, since the risk in our

work is minimal. 1) The identity of individuals is not known. 2) There is no way to track them

from the data in the database. 3) There is no social or physical risk. 4) The psychological risk is

absent since we asked participants according to their perceptions. 5) All the observers and par-

ticipants signed informed consent forms and all the data were totally anonymous.

3 Results and discussion

For the results, we adopt an example from an observer to illustrate and discuss the dominant

and complementary AUs computation in Dominant and complementary AUs computation,

then list and discuss all personalized prototypes and the corresponding manipulations in Per-

sonalized prototypes.

3.1 Dominant and complementary AUs computation

Fig 2 details dominant and complementary AUs computations of each emotion (happy, sad,

angry, and confident) from observer #2. See S1–S3 Figs for the computations from other

observers. As mentioned in Mental representation computation, the proportion of each AU is

computed based on the corresponding subset of trials (see Eqs (1) and (3)).

The concept of dominant and complementary AUs contains more information about emo-

tional prototypes than a list of activated AUs in the universal prototypes [13]. Here are our

observations. Similar observations can be found in supporting information (S1–S3 Figs).

The dominant AU drives the observer’s perception. As defined in Mental representation

computation, the dominant AU is the AUi with the largest proportion P(i|O{i*}), where i 2 μ.

As shown in the first row of Fig 2, the corresponding proportions exceed 80%. This means the

observer has a significant probability to choose the facial expression that has the dominant AU

activated.

We can observe the dependency between the dominant AU and the complementary

AUs. For the dominant AU computation shown on the first row of Fig 2, the complementary

AUs have much lower proportions than that of the dominant AU. For instance, in the histo-

gram for dominant AU computation of “happy”, the proportion of AU6 being selected is just

52% (note that AU6 is later determined to be the complementary AU). That is to say in the
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following situation when the observer saw a pair of stimuli that one had AU6 activated and

another one did not have AU6 activated; the observer #2 made a nearly random selection (i.e.,

52% to select the stimulus that had AU6 activated and 48% to select the stimulus that did not

have AU6 deactivated). This indicates that a single complementary AU can not drive the

observer’s perception as much as the dominant AU. However, for the complementary AU

computation shown on the second row of Fig 2, when the dominant AU is activated, the facial

expressions that have the complementary AUs activated have a significant probability of being

selected by the observer. For instance, in the histogram for complementary AUs computation

of “happy”, the proportion of AU6 being selected is 100%. That is to say in the following situa-

tion when the observer saw a pair of stimuli, both stimuli had AU12 activated, one of them

had AU6 activated but another one did not have AU6 activated; the observer #2 always chose

the stimulus that have AU6 activated. This means that complementary AUs can drive the

observer’s perception only in combination with the dominant AU.

3.2 Convergence efficiency

We discuss here the convergence efficiency of our approach by monitoring the convergence of

1) dominant AU computation and 2) complementary AUs computation as we increase the

number of trials used in the reverse correlation procedure.

To do so, we compute 1) the correlation between the histogram for dominant AU computa-

tion using the first n trials from the entire perceptual experiment (i.e., O), and the final histo-

gram of dominant AU computation (in Fig 2); 2) the correlation between the histogram of

complementary AUs computation using the first n trials from the subset of trials in which all

the stimuli have the dominant AU activated (i.e., O{d}), and the final histogram of complemen-

tary AUs computation (in Fig 2).

Fig 3 shows the convergence of dominant AU computation and complementary AUs com-

putation from the perceptual experiment of confidence. Similar converging curves from the

Fig 2. The results for dominant and complementary AUs computation from observer #2. Note that “Dom.” = dominant AU computation; “Comp.”

= complementary AUs computation; “Conf.” = self-confident. In each chart, the proportion for each AU is computed based on the corresponding

subset of trials. We highlight the dominant AU in red and the complementary AUs in yellow. The thresholds for the complementary AUs computation

are marked by yellow dashed lines.

https://doi.org/10.1371/journal.pone.0290612.g002
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Fig 3. Example from the perceptual experiment of confidence to monitor the convergence of our approach. (a)

Correlation between the result of dominant AU computation after the first n trials (x-axis) and the result after 840

trials. The average correlation for all observers is marked by the red dashed line. (b) Correlation between the result of

complementary AUs computation after the first n trials (x-axis) in the corresponding subset and the result using all

trials in the corresponding subset.

https://doi.org/10.1371/journal.pone.0290612.g003
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perceptual experiments of happiness, sadness, and anger can be found in S4–S6 Figs. These

curves reflect the typical reverse-correlation convergence (see e.g., Figure 6 in [39]).

The dominant AU can be determined with only a 12-minute experiment. For the conver-

gence of the dominant AU computation (in Fig 3a), while all 840 trials are considered, it takes

less than 170 trials to reach a correlation of 0.9. As our approach just takes the AU with maxi-

mum proportion to determine the dominant AU (see Eq 2), performing 170 trials is enough.

That is to say, only 170/840� 20% of the trials are necessary (equivalent to 12 minutes if the

entire perceptual experiment needs 60 minutes).

Only a few data are used for complementary AUs computation. For each observer, only a

small subset of trials (i.e., O{d}) are, in effect, used to estimate complementary AUs. For

instance, Fig 3b illustrates that the largest subset, which is from observer #2, only includes 31

trials, and these trials are distributed throughout the entire perceptual experiment.

A prototype can be determined accurately in about 20 minutes. Although in our

approach, the number of trials is set based on related works [10, 36, 37, 39], it appears unneces-

sary to randomly generate as many as 840 trials to determine dominant and complementary

AUs for an observer. In fact, the duration of the perceptual experiment can be largely reduced.

If our approach only randomly generates the first 170 trials to determine the dominant AU

and then generates another 100 trials only from O{d} to determine the complementary AUs, it

will be less than 20 minutes (270 trials, instead of 840 trials) to obtain the mental prototype.

3.3 Personalized prototypes

We reconstruct the personalized prototypes of each observer by activating the dominant and

complementary AUs. Fig 4 shows the personalized prototype of each observer, as well as state-

of-the-art prototypes from the literature [13, 18] (denoted by “Ek” and “Yu”). The correspond-

ing activated AUs are listed at the bottom of the faces. For the personalized prototypes, we

highlight the dominant AU in square brackets; the others are the complementary AUs. Note

that there is not any published database of confidence, and there is no state-of-the-art proto-

type for confidence.

According to the results in Fig 4, we observe that the personalized prototypes are compat-

ible with state-of-art prototypes. All 12 prototypes of basic emotions generally convey expres-

sions similar to that of Ekman [13] and Yu [18]. All dominant AUs: AU12 for happiness, AU4

or AU15 for sadness, and AU4 or AU9 for anger, can be found in state-of-the-art prototypes.

The prototypes are personalized. In each perceptual experiment task, although observers

were asked the same questions, all observers acquired subtly different mental representations

and, especially, different complementary AUs. With the exception of observer #1-sad and

Ekman [13], all synthesized facial expressions also differed from the state-of-the-art prototypes

by at least one AU. For instance, observer #2-happy is the same as Yu [18], plus the addition of

AU20 (lip stretcher), resulting in a wider smile.

Our manipulations can be extended to the emotions that are not available in existing

databases, such as confidence. We had no comparison prototypes for confidence. Although

all confidence manipulations had the same dominant AU12 as happiness, the expressions

remained different from any of the listed prototypes of happiness, notably because of the

involvement of AU4 (brow lowerer), AU5 (upper lid raiser), AU9 (nose wrinkler) and AU17

(chin raiser).

4 Evaluations

Here, we evaluate the personalized prototypes to prove the effectiveness of our approach. In

Subjective evaluation by mean opinion score, we conduct a subjective evaluation with the
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people who participated in the perceptual experiment, i.e., observers. The purpose of this eval-

uation is to assess the satisfaction of each observer with the prototypes they have created. In

Subjective evaluation by ranking, we conduct another subjective evaluation by two diverse

groups of people: observers and non-observers. We aim to quantify the acceptance of the per-

sonalized prototypes and compare them with the state-of-art prototypes [13, 18]. Note that the

purpose of this paper is not the extensive discussion of prototypes, such as their impact on

affective states across different cultures, but only to validate the effectiveness of the procedure.

4.1 Subjective evaluation by mean opinion score

To assess what observers thought of their own personalized facial expression prototypes, we

employed the Mean Opinion Score, which is a popular indicator of perceived media quality

[43]. We asked the four observers to rate their personalized facial prototypes from 1 to 5

Fig 4. Personalized prototypes of the four emotions from observers and state-of-the-art prototypes [13, 18]. For each personalized prototype, we

indicate the emotion category followed by the observer (denoted by “#1” to “#4”) or the state of the art (denoted by “Ek” and “Yu”). We detail the

dominant AU in square brackets and the others are complementary AUs. For the state-of-the-art prototypes, we only list the activated AUs. All facial

expressions are reconstructed by the same GAN (i.e., GANimation [3]) and the same actor. Note that GANimation [3] cannot edit AU16 (lower lip

depressor). We replace AU16 with AU25 (lips part) to reconstruct the angry prototype of Yu [18] (“angry-Yu”).

https://doi.org/10.1371/journal.pone.0290612.g004
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representing bad satisfaction to excellent satisfaction. In Table 1, we listed all the scores rated

by observers and presented the mean opinion score for each emotion (happy, sad, angry and

confident) in the last column.

All observers rated their personalized facial prototypes with “4” and “5”, meaning that

observers were satisfied with their personalized facial prototypes.

4.2 Subjective evaluation by ranking

To quantify the acceptance of the personalized prototypes, we added the state-of-art prototypes

of Ekman and Yu [13, 18] for comparison. We conducted a ranking study involving two dis-

tinct groups of people: 1) The “observers” group consisted of the observers who had previously

performed Perceptual experiment (i.e., observers #1, #2, #3, and #4), and 2) The “non-observ-

ers” group comprised participants recruited from Amazon Mechanical Turk (AMT) who had

not performed the previous Perceptual experiment.

Based on the ranking results obtained from the “observers” group, we aimed to investigate

whether each observer still preferred his/her own personalized prototype when presented with

a set of prototypes mixed with other observers’ personalized prototypes and state-of-the-art

prototypes. Additionally, by analyzing the ranking results obtained from the “non-observers”

group, we aimed to gain insights into the preferences of the other people (bystanders) who did

not participate in the previous perceptual experiments.

4.2.1 Procedure. In detail, each one performed 4 ranking tasks. Each task corresponds to

one of the four emotions. In each ranking task, all prototypes (6 listed prototypes for happy,

sad, and angry, 4 listed prototypes for confident as in Fig 4) were presented anonymously and

shuffled. Participants were asked to rank these faces from the happiest / saddest / angriest /

most confident to the least. Everyone was informed that all data collected were totally

anonymous.

For the “observers” group. In order to investigate if the prototypes are really personalized,

we calculate the probability that each observer ranks his/her own personalized prototypes in

each position (i.e., from the 1st place to the 6th place).

For the “non-observers” group. Since “non-observers” are not involved in personalizing

these prototypes, the measurement applicable to the “observers” group is not suitable for the

“non-observers” group. Therefore, we compared personalized prototypes as well as state-of-

the-art prototypes (i.e., baseline) in a relatively objective way. To analyze the rankings from all

the AMT participants, we assess the preferences of the prototypes in the following two steps. 1)

We first counted for each possible pair of prototypes how many participants preferred one of

the prototypes to the other. 2) We then employed the Schulze voting method [44] to compute

the preferences between each pair of prototypes and to derive the final ranking of these

prototypes.

Table 1. Subjective evaluation by mean opinion score.

emo.
obs. #1 #2 #3 #4 mean

Happy 4 5 5 4 4.5

Sad 5 5 4 4 4.5

Angry 5 4 4 4 4.25

Conf. 4 5 4 5 4.5

Each observer (denoted by #1, #2, #3, and #4) rated their personalized prototypes. The mean opinion score for each

emotion (denoted by emo.) is shown in the last column. Note that Conf. = self-confident.

https://doi.org/10.1371/journal.pone.0290612.t001
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Moreover, in the first step, according to the ranking, some preferences are cyclic: for sad-

ness, 51% of the participants preferred the prototype of observer #2 to the prototype of

observer #4, 57% of the participants preferred the prototype of observer #4 to the state-of-the-

art prototype of “Yu” [18], whereas 52% of the participants preferred the state-of-the-art proto-

type of “Yu” [18] to the prototype of observer #2. Thus, we can not directly quantify the accep-

tance between these prototypes. That’s the reason why we employ the Schulze method to

compute the preferences in the second step. For more details about the Schulze voting method,

please see the literature [44] and the supporting information (S2 Appendix).

4.2.2 Results. In terms of the “observers” group, Table 2 illustrates that each observer

ranks his/her personalized prototypes in each position. Note that there are only 4 prototypes

of self-confidence (no state-of-the-art prototype of self-confidence), whereas, for the other

emotions, there are 6 prototypes. That is why the probability of “5th” and “6th” by random

ranking is different from the others.

We notice that all the observers rank their personalized prototypes in the top-3. All the

observers have at least a 50% probability to rank their personalized prototypes in the first

place. However, if the ranking is random, the probability to select their personalized proto-

types is only 18.75%. This indicates that the prototypes are personalized. They can reflect

the observer’s mental image and well answer the question in the perceptual experiment.

In terms of the “non-observers” group, in Table 3, we present the preferences between

each pair of prototypes computed by the Schulze method and the final rankings. Note that due

to cyclic preferences (such as the aforementioned “#2”, “#4”, and “Yu.” of sadness) the sum of

the paired preferences is not always equal to 100%. For instance, in Table 3(b), the sum of the

preference from “#4” to “Yu.” (57%) and the preference from “Yu.” to “#4” (51%) is 108%.

Considering state-of-the-art prototypes as the baselines and for these 217 participants, our

observations are as follows.

• The low-ranking personalized prototypes are about equally preferred to at least one of

the state-of-the-art prototypes. “#3”, “#4”, and “Ek.” in Table 3(a) and 3(c), and “#2”, “#3”,

and “Yu.” in Table 3(b) are low-ranking (ranked in the last three). The paired preferences

between them are around 50%. For instance, in Table 3(a), 46% of the participants preferred

“#4” to “Ek.”, and 54% of the participants preferred “Ek.” to “#4”. That is to say, these low-

ranking personalized prototypes are about equally preferred to the state-of-the-art prototype

(“Ek.” or “Yu.”). This also validates that our approach can generate personalized prototypes.

• Emotional prototypes are not universal. As shown in Table 2, the prototypes are not uni-

versally preferred among participants. Although in Table 3(a) and 3(c), the top-ranking pro-

totypes are much preferred over the others (“#2” of happiness and “#1” of anger), most

preferences are far from 100% (and 0%). Especially in Table 3(b), most prototypes of sadness

Table 2. The probability that each observer ranks his/her own personalized prototype in each position.

obs.
pos. 1st 2nd 3rd 4th 5th 6th

#1 75% 25%

#2 75% 25%

#3 50% 50%

#4 50% 25% 25%

random 18.75% 18.75% 18.75% 18.75% 12.5% 12.5%

We set the probability to select their personalized prototypes by random ranking as the baseline. “obs.” = observer; “pos.” = position.

https://doi.org/10.1371/journal.pone.0290612.t002
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(including state-of-the-art prototypes) are about equally preferred among the hired partici-

pants. Indeed, most preferences are close to 50% which is quite far from 100%. Even there

are cyclic preferences. Hence, there can be many prototypes of one emotion.

To sum up, our approach generated personalized prototypes which both differed from each

other and from state-of-the-art prototypes. According to rankings from the “observers” group,

we can validate that the prototypes are personalized. According to the rankings from the “non-

observers” group, personalized prototypes are either close to state-of-the-art prototypes (e.g.

“#1” and “Ek.” of sadness are identical) or preferred to state-of-the-art prototypes. Rankings also

suggest that preferred prototypes of any single emotion are not unique across different people.

Table 3. Preferences between each pair of prototypes computed by the Schulze method and the final rankings.

(a) happiness

From
To #1 #2 #3 #4 Ek. Yu. ranking

#1 - 16% 75% 70% 82% 63% 2

#2 84% - 82% 87% 94% 87% 1

#3 25% 18% - 54% 52% 24% 4

#4 30% 13% 46% - 46% 25% 6

Ek. 18% 6% 48% 54% - 15% 5

Yu. 37% 13% 76% 75% 85% - 3

(b) sadness

From
To #2 #3 #4 #1/Ek. Yu. ranking

#2 - 52% 51% 48% 51% 4

#3 48% - 42% 38% 46% 5

#4 52% 58% - 49% 57% 2

#1/Ek. 52% 62% 51% - 64% 1

Yu. 52% 54% 51% 36% - 3

(c) anger

From
To #1 #2 #3 #4 Ek. Yu. ranking

#1 - 70% 76% 78% 76% 84% 1

#2 30% - 78% 72% 73% 45% 3

#3 24% 22% - 52% 51% 33% 4

#4 22% 28% 48% - 54% 36% 5

Ek. 24% 27% 49% 46% - 34% 6

Yu. 16% 55% 67% 64% 66% - 2

(d) self-confidence

From
To #1 #2 #3 #4 ranking

#1 - 46% 38% 46% 4

#2 54% - 26% 44% 3

#3 62% 74% - 76% 1

#4 54% 56% 24% - 2

The personalized prototypes of the corresponding observers are denoted by “#1” to “#4”. “Ek.” and “Yu.” refer to state-of-the-art prototypes [13, 18]. Since the sadness

prototypes of observer #1 and “Ek.” are identical, we merged their preference data and denoted them by “#1/Ek.”. For each pair of prototypes, we highlight the larger

preferences in bold. For instance, for happiness, 84% of the participants preferred “#2” to “#1”, whereas 16% of the participants preferred “#1” to “#2”.

https://doi.org/10.1371/journal.pone.0290612.t003
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5 Limitations and future work

The first limitation of our approach comes from the tool (GAN or any other type of local attri-

bute manipulation tool) for personalizing prototypes. The choice of the tool can limit the num-

ber and the type of local attributes that could be manipulated. For instance, GANimation only

focuses on AUs and does not consider other attributes, such as gaze direction [45], yet such

attributes should ideally be integrated into the reverse correlation process. Additionally,

GANimation is also incapable of editing AU16 (lower lip depressor). Although it is not the

goal of this paper, the authenticity of the face textures can therefore be improved.

Another limitation of our approach comes from the reverse correlation process. Performing

840 trials (about 40 to 60 minutes) for the perceptual experiment is time-consuming. As men-

tioned in Convergence efficiency, the procedure can be greatly reduced, to about 270 trials,

without losing accuracy. While this amount of ‘training’ data is several orders of magnitude

smaller than what would be needed to e.g. train a GAN from a dataset of annotated examples

for each emotion, the time burden on observers (about 20 minutes) can still be high in certain

application contexts. An automatic optimization process can be considered to further speed

up the process.

Finally, a limitation common to our approach and relative reverse correlation work is that

all the stimuli are unimodal. Reverse-correlation multimodal prototypes (i.e., both how a face

should look and how it should sound) have the potential to enrich affective computing studies

such as [46] in the future.

6 Conclusion

In this paper, we proposed a novel interdisciplinary approach to personalize facial expressions

by combining the facial expression manipulation technique from computer science with

reverse correlation, a procedure from cognitive science able to extract personalized mental

representations based on observers’ judgments. Our approach can personalize manipulations

of facial expressions that are not limited to basic emotions, and without the need for expertise.

We hope our approach can pave the way for further scientific studies in both affective com-

puting and computer science, and also expect it can be customized for audiences in different

application domains, e.g., a digital coach for the online interview or a digital mirror treating

psychiatric disorders of emotion.
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S1 Fig. Mental representation computation from the observer #1.

(TIF)

S2 Fig. Mental representation computation from the observer #3.

(TIF)

S3 Fig. Mental representation computation from the observer #4.

(TIF)

S4 Fig. Converging curves for happiness.

(TIF)

S5 Fig. Converging curves for sadness.

(TIF)

S6 Fig. Converging curves for anger.

(TIF)
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42. Baltrušaitis T, Robinson P, Morency LP. OpenFace: An open source facial behavior analysis toolkit. In:

2016 IEEE Winter Conference on Applications of Computer Vision (WACV); 2016. p. 1–10.

43. Streijl RC, Winkler S, Hands DS. Mean opinion score (MOS) revisited: methods and applications, limita-

tions and alternatives. Multimedia Systems. 2016; 22(2):213–227. https://doi.org/10.1007/s00530-014-

0446-1

44. Schulze M. A new monotonic, clone-independent, reversal symmetric, and condorcet-consistent single-

winner election method. Social Choice and Welfare. 2011; 36(2):267–303. https://doi.org/10.1007/

s00355-010-0475-4

45. Adams RB Jr, Kleck RE. Perceived gaze direction and the processing of facial displays of emotion. Psy-

chological science. 2003; 14(6):644–647. https://doi.org/10.1046/j.0956-7976.2003.psci_1479.x PMID:

14629700

46. Peterson JC, Uddenberg S, Griffiths TL, Todorov A, Suchow JW. Deep models of superficial face judg-

ments. Proceedings of the National Academy of Sciences. 2022; 119(17):e2115228119. https://doi.org/

10.1073/pnas.2115228119 PMID: 35446619

PLOS ONE Combining GAN with reverse correlation to construct personalized facial expressions

PLOS ONE | https://doi.org/10.1371/journal.pone.0290612 August 25, 2023 20 / 20

https://doi.org/10.1016/S0042-6989(01)00097-9
http://www.ncbi.nlm.nih.gov/pubmed/11448718
https://doi.org/10.1073/pnas.1807862115
http://www.ncbi.nlm.nih.gov/pubmed/30297420
https://doi.org/10.1073/pnas.1716090115
https://doi.org/10.1073/pnas.1716090115
http://www.ncbi.nlm.nih.gov/pubmed/29581266
https://doi.org/10.1038/s41467-020-20649-4
https://doi.org/10.1371/journal.pone.0205943
http://www.ncbi.nlm.nih.gov/pubmed/30947281
https://doi.org/10.1098/rspb.2012.2060
https://doi.org/10.1098/rspb.2012.2060
http://www.ncbi.nlm.nih.gov/pubmed/23075835
https://doi.org/10.3389/fpsyg.2013.00476
http://www.ncbi.nlm.nih.gov/pubmed/23908637
https://doi.org/10.1007/s00530-014-0446-1
https://doi.org/10.1007/s00530-014-0446-1
https://doi.org/10.1007/s00355-010-0475-4
https://doi.org/10.1007/s00355-010-0475-4
https://doi.org/10.1046/j.0956-7976.2003.psci_1479.x
http://www.ncbi.nlm.nih.gov/pubmed/14629700
https://doi.org/10.1073/pnas.2115228119
https://doi.org/10.1073/pnas.2115228119
http://www.ncbi.nlm.nih.gov/pubmed/35446619
https://doi.org/10.1371/journal.pone.0290612

