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Abstract 
Research in machine-learning classification of electroencephalography (EEG) data offers important 

perspectives for the diagnosis and prognosis of a wide variety of neurological and psychiatric 

conditions, but the clinical adoption of such systems remains low.  We propose here that much of the 

difficulties translating EEG-machine learning research to the clinic result from consistent inaccuracies 

in their technical reporting, which severely impair the interpretability of their often-high claims of 

performance. Taking example from a major class of machine-learning algorithms used in EEG 

research, the support-vector machine (SVM), we highlight three important aspects of model 

development (normalization, hyperparameter optimization and cross-validation) and show that, 

while these 3 aspects can make or break the performance of the system, they are left entirely 

undocumented in a shockingly vast majority of the research literature. Providing a more systematic 

description of these aspects of model development constitute three simple steps to improve the 

interpretability of EEG-SVM research and, in fine, its clinical adoption. 

 

Introduction 
Electroencephalography (EEG), and its associated methodologies such as evoked/event-related 

potentials (EP/ERP), allows recording the electric fields generated by neuronal activity non-invasively 

simply by placing electrodes on the scalp. This simplicity makes EEG possibly the most widespread 

tool in human brain research, with significant impact in all fields of psychology and cognitive 

neuroscience. However, while its recording is relatively simple, identifying valuable information 

within the various waveforms of the EEG remains a complex technical process, as these signals are 

noisy, complex and of high dimensionality (Cohen, 2017). In effect, this analytical complexity limits 

the routine indication of EEG/ERP in the clinic to, besides cerebral death exams,  only a handful of 

conditions incl. epilepsy, sleep disorders and disorders of consciousness (Quigg, Shneker & Domer, 

2001).   
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In an attempt to increase the translatability between EEG/ERP research and the clinic, recent years 

have seen a surge in the development of machine-learning systems aiming to standardize and 

automate the classification of EEG signals into mental/physiological or pathological states of interest. 

These systems offer the promise to move from group-level statistics to patient-by-patient 

decidability, not only in traditional indications such as sleep (Fiorillo et al., 2019), consciousness 

(Engemann et al., 2018) or epilepsy (Siddiqui et al., 2020), but also in a wider number of major 

central nervous system disorders including Alzheimer's disease, schizophrenia, depression, and pain 

(Leiser et al. 2011).  

Yet, despite years of research, the clinical adoption of AI-related technologies in EEG medical 

diagnostics remain slow (Kelly et al. 2019) and is in stark contrast with the high-to-very-high 

performance indicators (e.g. diagnostics in the high-90% accuracies) seemingly promised for such 

systems by the specialized research literature. While reasons for this slow adoption may include 

human factor and regulatory aspects (Elkefi, Wang & Asan, 2020), we propose here that much of the 

difficulties translating EEG-machine learning research to the clinic in fact result from consistent 

inaccuracies in their technical reporting, which severely impair the interpretability of their often-high 

claims of performance. Taking example from a major class of machine-learning algorithms used in 

EEG research, the support-vector machine (SVM; Cortes & Vapnik, 1995), we review three important 

degrees-of-freedom that researchers have in developing and evaluating such algorithms 

(normalization, hyperparameter optimization and cross-validation) and show that, while these 3 

aspects can make or break the performance of the system, they are left entirely undocumented in a 

shockingly vast majority of the research literature. In our view, providing a more systematic 

description of these aspects of model development constitute three simple steps to improve the 

interpretability of EEG-SVM research and, in fine, its clinical adoption. 

A suspiciously positive distribution of accuracy in the EEG-SVM 

literature 

We queried the pubmed database on Jan. 14th 2021 for articles covering SVM classification of EEG 

signals, excluding articles focussing on detecting EEG microstructural elements in sleep (e.g. spindles) 

and epilepsy (e.g. spikes). The search equation was the following : “eeg support vector machine 

classification NOT epilepsy NOT seizure NOT review NOT sleep”. The query returned an initial list of 

434 articles, to which 4 articles were added from additional sources. The eligibility of the selected 

papers was established by first examining the titles, then the abstracts, and finally the entire articles. 

262 articles that did not satisfy the criteria were rejected, leaving 176 articles included for the 

present analysis.  

Publication dates revealed that this field of research is recent and active, starting in the early 2010's 

and peaking after 2015; in 2018 alone, the number of publications was equivalent to the number of 

articles published in 2015 and 2016 combined (Figure 1B). Geographically (Figure 1A), the majority of 

studies came from China (n=51, 28.98% of first author affiliations), USA (n=9, 5.11%) and India (n=8, 

4.55%) (note: that distribution can be compared with a similar map of EEG deep-learning research - 

Roy et al. 2019), and focused on classifying emotional and cognitive brain states (75 articles); the 

remaining 55 and 36 articles concerned brain-computer interface (BCI) and clinical diagnosis 

respectively. For each included article, 36 research items were then extracted describing authorship 

and publication metrics, type of input data, EEG pre-processing, SVM methodology, results obtained 
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and availability of code and data. In the following, we focus on items related to SVM methodology 

and how they relate to authorship, model performance and reproducibility; we nevertheless provide 

the full data table in Supplementary material. 

157 of the 176 articles reported performance metrics in the form of two-class classification accuracy. 

With a median of 87.8%, the distribution of accuracy values across papers was strongly skewed 

towards high-to-very-high performance (Figure 1C). Articles solely published by authors affiliated 

with natural science departments (N=25, 15%) had a more uniform distribution of reported accuracy 

than articles with authors affiliated with computer science or engineering departments (N=90, 61%), 

which feature increasingly peaky distributions in the high-80-90% as the proportion of these authors 

increase (Figure 1C). This disciplinary effect is partly confounded with journal impact factors (median 

IF=3.1), with articles published in below-median IFs being predominantly authored by CS/Engineering 

authors and reporting higher accuracies (Mdn=88.89%) than articles in above-median IFs 

(Mdn=85.96%; Figure 1D).  

Such distributions of high accuracies are unlikely to reflect the true distribution of performance over 

the population of all EEG-SVM classification problems, especially across domains as varied as 

emotion classification, brain-computer interfaces or psychiatric diagnosis. While these distributions 

likely incorporate biases in topic selection (in which researchers tend to avoid automatic 

classification problems for which the link between EEG signals and the cognitive/clinical variables of 

interest is expected to be poor) and in result publication (in which authors and journals only publish 

studies that “work” - Chavalarias et al., 2016), the fact that their positive skew increases with the 

technicity of authors (as measured by departmental affiliation) also suggests that the technicalities of 

how to build and evaluate EEG-SVM systems constitute “researchers’ degrees of freedom” 

(Simmons, Nelson & Simonsohn, 2011)  that, in fact, allow optimizing results to almost-arbitrary 

levels of performance.  

However, in our view, this does not suggest that a majority of these studies are flawed or 

misrepresenting the strength of the association of EEG to symptoms. What this suggests, rather, is 

that the performance of a given EEG-SVM classification system is impossible to interpret without  

complete disclosure and understanding of how that system was built and evaluated.  In the 

following, we present three important aspects of system building and evaluation (normalization, 

hyperparameter optimization and cross-validation) which strike us as particularly important, both 

because they critically affect the interpretation of the reported performance and because they are 

undocumented in a majority of the literature, and give recommendations on how these items should 

be reported in research articles.     
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Figure 1 - The recent EEG-SVM research literature reports distributions of percentage accuracy that are 

suspiciously positive for such a variety of research problems (n=176). (A) Map of country of first author 

affiliation. (B) Yearly counts of articles included in our review. (C) Articles published in below-median IFs 

(orange)  are predominantly published by authors affiliated with computer science or engineering 

departments, and report distributions of accuracies that are more positively skewed and more peaky in the 90-

100% range. (D) Comparison of the accuracies reported by articles solely published by authors affiliated with 

natural science departments (blue; n=25) and articles published solely by authors affiliated with engineering 

(orange; n=90)  
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Figure 2 - Three important researcher’s degrees of freedom in building and evaluating EEG-SVM classification 

systems, which can make or break system performance. Left, vertically: Normalisation. If data have 

different scales (e.g. patient data with larger EEG impedances than controls), failing to normalize can 

make a difficult problem (bottom) appear spuriously easy (top). Horizontally: Hyperparameter 

optimization. Model parameters control, for instance, the tradeoff between the accurate 

classification of the training examples (improving from left to right) and the ability to generalize to 

new, unseen examples (improving from right to left). Right, vertically: Cross-validation. Testing on 

the same dataset used for training can make an overfitted model appear perfectly accurate (bottom), 

while testing on new, unseen data reveals that its generalization ability is in fact poor (top).   
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Figure 3 - Three critical aspects of EEG-SVM system building and evaluation are left undocumented in a 

majority of the research literature  (Top: normalization; middle: hyperparameter optimization; bottom: cross-

validation). These proportions did not depend on the disciplinary background of the study authors  

Three simple steps to improve the interpretability of EEG-SVM studies 

Normalization 

SVM classification works by mapping training examples, represented as multidimensional data points 

in a vector space (Figure 2), into a higher-dimensional space where the decision problem between 

the classes is easier (linearly-separable). This mapping is based on weighting functions, or kernels, 

which typically assume that all the data being compared are within a standard range. It is therefore 

very important to normalise the feature vectors before training the classifier.  

Normalization issues can make or break SVM classification results. For instance, if multiple 

dimensions in the data have very different ranges (e.g. different power levels due to electrode 

position; or voltage data in �volts next to spectrum power data in dBs), failing to normalize data 

within each dimension will result in the model overemphasizing the numerical contribution of one 

dimension compared to the other, and possibly degrade performance. Conversely, if data from one’s 

classes of interest have different scales or offsets (e.g. patient data with larger EEG impedances than 

controls), failing to normalize data in all dimensions can make a difficult problem appear spuriously 

linearly-separable (Figure 2-left) 

Despite its importance, we found that the proportion of articles for which no normalization is 

mentioned is overwhelming: 71.0% (Figure 3-top). Different normalization methods exist: one can 

e.g.  match the minimum and maximum values of each dimension to 0 and 1, or to -1 and 1 (min-max 
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normalisation), or subtract the mean of the values and divide by the standard deviation (z-score). Of 

the remaining articles, 13.6% opted for z-score normalisation, and the rest are spread over variants 

of min-max normalisation. 

An accurate description of the process of normalizing data should not only describe its mathematical 

method, but also explain over what set of data it is done: for instance, normalizing data separately 

within patients and controls would solve the problem illustrated in Figure 2-left, but normalizing 

across all data wouldn’t. The following example, adapted from one of our reviewed articles (Zarei et 

al.2017) illustrates what a transparent, useful description of normalization can look like:  

“2.2.1. Normalization 

“In this step, all EEG signals are preprocessed to have unit variance and zero mean to 

eliminate differences in power levels between the signals due to electrode position. The 

normalization process facilitates the PCA calculations to ensure equal weighting. [mention 

normalization, and explain the rationale for doing so in this specific problem]  

 

This process is done by subtracting the overall average from each EEG signal and dividing it 

by its standard deviation (Equ.1). [give normalization method; formalize it with equation]  

 

As mentioned before, two datasets IVa and IVb from BCI Competition III are used in this 

study. Both dataset consist in EEG signals involving a MI task with two classes. [...] Each 

dataset for a subject is divided into 50/50 fractions for training and testing sets for evaluation 

of our proposed methods. Therefore, each training set and testing set for a subject contains 

59 channel data in each class. All channel data in both training and testing sets are 

normalized separately using Equ.1 (see Fig.1 - Block diagram)”. [explain over what set of 

data the normalization is applied; illustrate with block diagram]  
 

Hyperparameter optimization 

SVMs predict the belonging of a trial (e.g., a patient’s epoch of EEG recording in response to a 

stimulus) to a given class of data (e.g., pathological/not) by constructing a model of the boundary 

between classes. To do so, SVMs use a weighting function, or kernel, to  map training examples 

(trials, and their annotated class) to points in a space constructed to maximise the width of the gap 

between the two classes (Cortes & Vapnik, 1995). New examples are then mapped into that same 

space and predicted to belong to one or the other class depending on which side of the gap they fall 

into.  

A variety of kernels are used to construct SVMs, such as linear and radial basis function (RBF) kernels, 
and their behaviour can typically be adjusted using  hyperparameters that regulate what the model 
optimizes for (Herbrich, 2001). For instance, parameter C controls the tradeoff between the accurate 
classification of training examples and the maximization of the decision-boundary margin, i.e. how 
much one is willing to compromise on exactitude for the benefit of generalizability (Figure 2-bottom).  
 
The choice of kernel hyperparameters strongly influences the performance of the model and it is 
highly recommended to optimize them (e.g. by testing for all possible values in a systematic “grid 
search”) for one’s specific classification problem.  Yet,  out of the 176 articles included in this study, 
124 (70.5%) did not mention any hyperparameter optimization, and 135 (76.7%) did not provide the 
selected hyperparameters (Figure 3-middle). Only 76 studies (43.2%) optimised and/or provided the 
coefficients of the kernels used (59.6% of studies who explicitly searched for optimal parameters 
used grid search). This indicates that either the authors were not aware of the importance of these 
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elements and did not employ them, or that they used a particular method or parameters but did not 
see fit to document it. 
 
An accurate description of the process of optimizing hyperparameters should explain what kernel is 

used, what hyperparameters are optimized (e.g. C), with what method (e.g. grid search) and which 

value is retained. As for normalization, it should also explain on what set of data these parameters 

are optimized: the normal practice is to optimize parameters on a different set of data than the one 

used for evaluation, and test whether these values generalize well to unseen data (a process made 

even more complicated by cross-validation, see below). The following example, adapted from 

Arvaneh et al. (2011), Hou et al. (2020) and Kirar & Agrawal (2018), illustrates what a transparent, 

useful description of hyperparameter optimization can look like:  

“The Radial Basis Function (RBF) was used as the kernel function of the SVM, as suggested in 

[30] for problems in which, like here, the number of instances far exceeds the number of 

features. [say what kernel is used, and why]  

To achieve best performance, kernel hyperparameters C (regularization) and g (radius) were 

optimized by grid search, using 10-fold cross-validation on the training data. [say what 

hyperparameters are optimized and on what dataset] 

The search domains were  [1-500] for C and [1-100] for g, with a step size of 10”. [give details 

of optimization method] “Following optimization, the values retained for testing were C = 

100 and g = 10.” [give hyperparameter values] 

 

Cross-validation 

When translating a machine-learning system to clinical practice, the only performance metrics that 

really matters is its ability to generalize to new, unseen examples. To evaluate this ability, it is 

common to divide the available data into a set for training the model and a set for testing it. One can 

do this only once or, for better statistical estimation of the underlying sampling distribution, split 

data into different partitions that are then used successively as training or testing sets - a process 

called cross-validation (Wong, 2015). The most popular procedure is called k-fold cross-validation, in 

reference to the number of partitions that data set is to be split into. Leave-One-Out (LOO) is an 

alternative method where, for each sample in the dataset, a model is built using all other samples 

and then tested on the selected sample. Leave-One-Subject-Out (LOSO) is the same procedure as 

LOO, but where data from a whole participant is set aside (for a comparison of these methods, see 

e.g. Simon 2007). 

 

Not using cross-validation (i.e. testing on training data) systematic over-evaluates model 

performance, in particular in cases where model parameters are adjusted to overfit training data 

(Figure 2-right) and where accuracy can reach 100% (as reported, incidentally, in n=6 articles...). Even 

when using a cross-validation procedure, system generalizability can be overestimated when model 

hyperparameters are optimized based on testing data (i.e. training with successive values of the 

parameter, and selecting both the optimal value and the final system accuracy by cross-validation on 

the same data). The normal practice in this case should be to further split training data into “training” 

and “validation” sets, the latter being used to select the best hyperparameter, and to leave it to the 
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“test” set to measure the performance of the best model. Park & Han (2018) note in passing that this 

usage of the word ‘validation’ in machine-learning, which refers to the fine-tuning stage of model 

development, can create confusions in the fields of medicine and health, where it can be wrongly 

taken to mean verifying model performance (what the field instead called ‘testing’).  

 

Worryingly, a sizeable n=27 (15.3%) of articles did not mention using cross-validation when 

evaluating model performance (Figure 3-bottom). When they did (n=149), a majority used k-fold 

cross-validation (65.3%; 10-fold: 34.7%), LOO (8.5%) or LOSO (7.4%). However, only n=28 articles 

(18.8%) of those reporting cross-validated performance mentioned using a separate validation set for 

model optimization  

 

The following example, adapted from Jessen, Obleser & Tune (2021), illustrates what a transparent, 

useful description of cross-validation can look like:  

“As a first step, we split the continuous data into two data segments, with 80% of the data 

reserved for training, and the remaining 20% set aside for final model testing. [clearly 

describe the stratification of your data] 

To optimize hyperparameter λ, we then apply a technique called k-fold cross-validation. To 

this end, we split the training data into 4 equal sized segments, referred to as folds. Within 

the cross-validation routine, training and validation sets are rotated until each fold has served 

as validation set while the remaining three folds are jointly used for training (see Fig - 

schematic of data sets). In the next step, we average model performance (i.e., Pearson’s r and 

MSE) per tested λ value across folds to identify the λ value that yields the best model 

performance. [say whether you use cross-validation, what method you use, and if you use a 

validation set to optimize model parameters.] 

Finally, we apply this optimal λ parameter for model estimation using all training data and 

test it on the initially left-out test data segment. All results reported in the following 

correspond to performance estimated on such test data”. [clearly state whether reported 

performance is computed on training, validation or testing data] 

Conclusion 
In sum, because they can utterly modify the meaning of a system’s reported accuracy, documenting 

the three aspects of normalization, hyperparameter optimization and cross-validation constitute 

simple and easy steps to improve the interpretability and clinical translatability of EEG-SVM research. 

Interestingly, while a majority of the research literature fails to do so, these proportions do not 

appear, at least for normalization and parameter optimization, to much depend on the disciplinary 

background of the study authors (Figure 3; note though that undocumented cross-validation is more 

common in articles solely published by engineering authors). This lack of transparency is all the more 

so striking as, typically, the same articles give a thorough description of the EEG methodology 

(recording, processing, etc.) used to generate the data (see e.g. Aydin et al., 2015; Bamatraf et al., 

2016; Torabi et al., 2017).  

Such recommendations of transparency overlap with a general call for greater science openness, not 

only for the access to publications but also to data and code. On that aspect too, our set of articles 

appears to be lacking: only 26.1% of our reviewed papers lists data as public or available on request, 

.CC-BY-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted December 16, 2021. ; https://doi.org/10.1101/2021.12.14.472588doi: bioRxiv preprint 

https://doi.org/10.1101/2021.12.14.472588
http://creativecommons.org/licenses/by-nd/4.0/


a proportion similar to medical journals like BMJ (Rowhani-Farid & Barnett, 2016) but smaller than 

journals with an explicit data-sharing policy, such as PLOS One (Federer et al. 2018) or, in the same 

technical field, than the 53% reported in a recent review of EEG & deep-learning research (Roy et al. 

2019).  Similarly, code sharing concerned a meager 3% of the articles, again a smaller proportion than 

what is now typical of fields with greater awareness of replicability such as psychological science and 

statistics (33%; Kucharský, Houtkoop & Visser, 2020). Initiatives to publish datasets and code with 

digital object identifier (DOI) such as the Open Science Framework (www.osf.io), which allow 

researchers to obtain credit for their data and to cite them, or journal submission procedure which 

explicitly incorporate data and code sharing, such as in the French Statistical Society’s Computo 

journal (https://computo.sfds.asso.fr), are possible levers to increase these trends.  

Finally, the three aspects of model building highlighted here, while described in relation to the 

specific method of SVMs, are also examples of general concepts (feature selection, regularization, 

cross-validation) that are relevant for the greater corpus of EEG machine-learning research. For 

instance, a recent review of EEG deep-learning research (Roy et al. 2019) showed that an even 

greater proportion of articles did not use or mention hyperparameter search (80%) or cross-

validation (42%. This suggests that, without the establishment of best practices for reporting such as 

advocated here and elsewhere (Poldrack, Huckins & Varoquaux, 2020), newer and increasingly 

sophisticated AI methods may even further degrade, rather than improve, the clinical translatability 

of the associated research results.     
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