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Abstract

Over the past few years, the field of visual social cognition and face processing has been

dramatically impacted by a series of data-driven studies employing computer-graphics tools

to synthesize arbitrary meaningful facial expressions. In the auditory modality, reverse cor-

relation is traditionally used to characterize sensory processing at the level of spectral or

spectro-temporal stimulus properties, but not higher-level cognitive processing of e.g.

words, sentences or music, by lack of tools able to manipulate the stimulus dimensions that

are relevant for these processes. Here, we present an open-source audio-transformation

toolbox, called CLEESE, able to systematically randomize the prosody/melody of existing

speech and music recordings. CLEESE works by cutting recordings in small successive

time segments (e.g. every successive 100 milliseconds in a spoken utterance), and applying

a random parametric transformation of each segment’s pitch, duration or amplitude, using a

new Python-language implementation of the phase-vocoder digital audio technique. We

present here two applications of the tool to generate stimuli for studying intonation process-

ing of interrogative vs declarative speech, and rhythm processing of sung melodies.

Introduction

The field of high-level visual and auditory research is concerned with the sensory and cognitive

processes involved in the recognition of objects or words, faces or speakers and, increasingly,

of social expressions of emotions or attitudes in faces, speech and music. In traditional psycho-

logical methodology, the signal features that drive judgments (e.g., facial metrics such as

width-to-height ratio, acoustical features such as mean pitch) are posited by the experimenter

before being controlled or tested experimentally, which may create a variety of confirmation

biases or experimental demands. For instance, stimuli constructed to display western facial

expressions of happiness or sadness may well be recognized as such by non-western observers
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[1], but yet may not be the way these emotions are spontaneously produced, or internally rep-

resented, in such cultures [2]. Similarly in auditory cognition, musical stimuli recorded by

experts pressed to express emotions in music may do so by mimicking expressive cues used in

speech, but these cues may not exhaust the many other ways in which arbitrary music can

express emotions [3]. For all these reasons, in recent years, a series of powerful data-driven

paradigms (built on techniques such as reverse-correlation, classification image or bubbles; see

[4] for a review) were introduced in the field of visual cognition to discover relevant signal fea-

tures empirically, by analyzing participant responses to large sets of systematically-varied sti-

muli [5].

The reverse correlation technique was first introduced in neurophysiology to characterize

neuronal receptive fields of biological systems with so-called “white noise analysis” [6–9]. In

psychophysics, the technique was then adapted to characterize human sensory processes, tak-

ing behavioral choices (e.g., yes/no responses) instead of neuronal spikes as the systems’ output

variables to study, e.g. in the auditory domain, detection of tones in noise [10] or loudness

weighting in tones and noise ([11]; see [4] for a review of similar applications in vision). In the

visual domain, these techniques have been extended in recent years to address not only low-

level sensory processes, but higher-level cognitive mechanisms in humans: facial recognition

[12], emotional expressions [2, 13], social traits [14], as well as their associated individual and

cultural variations ([15]; for a review, see [5]). In speech, even more recently, reverse correla-

tion and the associated “bubbles” technique were used to study spectro-temporal regions

underlying speech intelligibility [16, 17] or phoneme discrimination in noise [18, 19] and, in

music, timbre recognition of musical instruments [20, 21].

All of these techniques aim to isolate the subspace of feature dimensions that maximizes

participant responses, and as such, need to search the stimulus generative space e.g. of all pos-

sible images or sounds relevant for a given task. A typical way to define and search such a

space is to consider a single target stimulus (e.g. a neutral face, or the recording of a spoken

phoneme), apply a great number of noise masks that modify the low- or high-level physical

properties of that target, and then regress the (random) physical properties of the masks on

participant judgements. Techniques differ in how such noise masks are generated, and on

what stimulus subspace they operate (Fig 1). At the lowest possible level, early proposals have

applied simple pixel-level noise masks [13], and sometimes even no stimulus at all, akin to

white noise “static” on a TV screen in which participants were forced to confabulate the pres-

ence of a visual target [22] or a vowel sound [19]. More consistently, noise masks generally

operate on low-level, frequency-based representations of the signal, e.g. at different scales and

orientations for image stimuli [12, 14], different frequencies of an auditory spectrogram [17,

23] or different rates and scales of a modulation spectrum (MPS) [16, 21].

While low-level subspace noise has the advantage of providing a physical description

of the stimuli driving participant responses, it is often a suboptimal search space for high-

level cognitive tasks. First, all stimulus features that are driving participant judgements may

not be efficiently encoded in low-level representations: the auditory modulation spectrum,

for instance, is sparse for a sound’s harmonic regularities, coded for by a single MPS pixel,

but not for features localized in time, such as attack time or transitions between phonemes

[23]. As a consequence, local mask fluctuations will create continuous variations for the for-

mer, but not the latter features which will be difficult to regress on. Second, low-level varia-

tions in stimuli typically create highly distorted faces or sounds (Fig 1-top), for which one

may question the ecological relevance of participant judgements. Finally, and perhaps most

critically, many of the most expressive, cognitively-meaningful features of a face or voice

signal are coordinated action-units (e.g. a contraction of a facial muscle, the rise of pitch at

the end of a spoken utterance) that have distributed representations in low-level search
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spaces, and will never be consistently explored by a finite amount of random activations at

that level.

Consequently, the face research community has recently developed a number of higher-

level generative models able to synthesize facial expressions through the systematic manipula-

tion of facial action units [24, 25]. These tools are based on morphological models that simu-

late the ‘amplitude vs time’ effect of individual muscles and then reconstruct realistic facial

textures that account for the modified underlying morphology, as well as head pose and light-

ing. Searching such high-level subspaces with reverse-correlation is akin to searching the space

of all possible facial expressions (Fig 1-bottom), while leaving out the myriad of other possible

facial stimuli that are not directly interpretable as human-made expressions—a highly efficient

strategy that has been applied to characterize subtle aspects of social and emotional face per-

ception processes, such as cultural variations in emotional expressions [2], physical differences

between different kinds of smiles [26] or in the way these features are processed in time [27].

In auditory research, however, similarly efficient data-driven strategies have not yet been com-

mon practice, by lack of tools able to manipulate the high-level stimulus dimensions that are

relevant for similar judgement tasks when they apply on, e.g., voice or music.

Here, we present an open-source audio-transformation toolbox, called CLEESE (Combina-

torial Expressive Speech Engine, named after British actor John Cleese, with reference to the

“Ministry of Silly Talks”), able to systematically randomize the prosody/melody of existing

Fig 1. Low- and high-level subspace noise for the reverse-correlation of visual and audio stimuli. Reverse-correlation paradigms aim to

isolate the subspace of feature dimensions that maximizes participant responses, and as such, need to search a stimulus generative space e.g. of all

possible images or sounds relevant for a task. In a majority of studies, noise masks operate on low-level, frequency-based representations of the

signal, e.g. at different scales and orientations for image stimuli (top-left) or different frequencies of an auditory spectrogram (top-right). More

recent models in the vision modality are able to explore the subspace of facial expressions through the systematic manipulation of facial action

units (bottom-left). The present work represents a conceptually-similar development for the auditory modality.

https://doi.org/10.1371/journal.pone.0205943.g001
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speech and music recordings. CLEESE works by cutting recordings in small successive time

segments (e.g. every successive 100 milliseconds in a spoken utterance), and applying a ran-

dom parametric transformation of each segment’s pitch, duration, amplitude or frequency

content, using a new Python-language implementation of the phase-vocoder digital audio

technique. Transformations made with CLEESE explore the space of speech intonation and

expressive speech prosody by allowing to create random time-profiles of pitch (e.g. rising pitch

at the end of an utterance, as in interrogative sentences [28]), of duration (e.g. word-final

vowel lengthening, as used as a cue for word segmentation [29]) or amplitude (e.g. louder on

prominent words or phonemes [30]). In music, the same transformations can be described as

melodic, manipulating the pitch/tuning of successive notes in a sequence (e.g. ��, � or �]), their

duration (e.g. �, � or �) or amplitude (e.g. p, mf or f). All transformations are parametric, thus

allowing to generate thousands of random variants drawn e.g. from a gaussian distribution;

and realistic (within appropriate parameter ranges), such that the resulting audio stimuli do

not typically appear artificial/transformed, but rather plausible as ecological speech or music

recordings.

In recent work, we have used CLEESE with a reverse-correlation paradigm to uncover what

mental representations of pitch profiles underlie judgements of speaker dominance and trust-

worthiness in short utterances like the word ‘hello’ [31]. We recorded a single utterance of the

word ‘hello’ by one male and one female speaker. CLEESE was first used to flatten the pitch of

the recordings (by transforming it with a pitch profile that alters its original prosody to con-

stant pitch), and then to generate random pitch variations, by manipulating the pitch over

6-time points on Gaussian distributions of SD = 70 cents clipped at ±2.2 SD (these values were

chosen in order to map natural variations in speech). Pairs of these randomly-manipulated

voices were then presented to observers who were asked, on each trial, to judge which of the

two versions appeared most dominant/trustworthy. The participants’ mental representations

were then computed by computing the mean pitch contour (a 6-point vector) of the voices

they classified as dominant (resp. trustworthy) minus the mean pitch contour of the voices

classified as non-dominant (resp. non-trustworthy).

In this article, we describe the functionality of the CLEESE toolbox, the algorithms that

underlie it as well as how to deploy it in psychophysical reverse-correlation experiments such

as those above. We then present two case-studies in which we use CLEESE to generate pitch-

shifted speech stimuli to study the perception of interrogative vs declarative speech prosody,

and time-stretched musical stimuli to study the rhythm processing of sung melodies.

Functionality, algorithms, usage

Functionality

CLEESE is an open-source Python toolbox used to create random or fixed pitch, time and

amplitude transformations on any input sound. CLEESE can also be used to create spectral

transformations, a technique not described here—see [32]. The transformations can be both

static or time-varying. Besides its purpose of generating many stimuli for reverse-correlation

experiments, the toolbox can also be used for producing individual, user-determined transfor-

mations. CLEESE is available for download upon free registration at http://forumnet.ircam.fr/

product/cleese.

CLEESE operates by generating a set of random breakpoint functions (BPFs) for each trans-

formation, which are then passed to a spectral processing engine (based on the phase vocoder

algorithm, see below) for the transformation to occur. BPFs determine how the sound trans-

formations vary over the duration of the stimulus. CLEESE can randomly generate BPFs of

two types: ramps, where the corresponding sound parameter is interpolated linearly between
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breakpoints (Fig 2-top) and square, where the BPF is a square signal with sloped transitions

(Fig 2-bottom). BPF segments can be defined either by forcing all of them to have a fixed dura-

tion (i.e., their number will depend on the whole sound’s duration, see Fig 2-left), or by forcing

a fixed number of segments along the total sound duration (i.e., their duration will depend on

the whole sound’s duration, see Fig 2-right). Alternatively, the user can pass custom break-

point positions, which can be defined manually e.g. to correspond to each syllable or note in

given a recording.

BPFs can be defined to transform sounds along three signal dimensions:

Pitch: The BPF is used to transpose up and down the pitch of each segment in the sound,

while maintaining its amplitude and duration constant. Each breakpoint in the BPF corre-

sponds to a pitch shift value p in cents or percents of a semitone, with 0 cents corresponding

to no change with respect to original pitch. See S1 Sound for an example of pitch shifting

manipulation.

Fig 2. CLEESE operates by generating a set of random breakpoint functions (BPFs) which control the dynamically-changing parameters of

the sound transformations. In ramp BPFs (top), transformation parameters are interpolated linearly between breakpoints. In square BPFs, they

are constant in each segment. BPFs can be specified either in terms of fixed duration (left: 80ms segments) or fixed number of segments (right: 6

segments).

https://doi.org/10.1371/journal.pone.0205943.g002
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Time: The BPF is used to stretch or compress the duration of each segment in the sound,

while maintaining its amplitude and pitch constant. Each breakpoint corresponds to a time

stretch factor t in ratio to original duration, with 0< t< 1 corresponding to compression/

faster speed, t> 1 stretched/slower speed, and t = 1 no change with respect to segment’s

original duration. See S2 Sound for an example of time stretching manipulation.

Amplitude: The BPF is used to amplify or decrease the signal’s instantaneous amplitude in

each segment, while maintaining its pitch and duration constant. Each breakpoint corre-

sponds to a gain value g in dBs (thus, in base-10 logarithm ratio to original signal ampli-

tude), with g = 0 corresponding to no change with respect to original amplitude.

The default mode is for CLEESE to generate p, t or g values at each breakpoint by sampling

from a Gaussian distribution centered on p = 0, t = 1 or g = 0 (no change) and whose standard

deviation (in cents, duration or amplitude ratio) allows to statistically control the intensity of

the transformations. For instance, with a pitch SD of 100 cents, CLEESE will assign random

shift values at every breakpoint, 68% of which are within ± 1 semitone of the segment’s original

pitch (Fig 3A and 3B). The transformations can be chained, e.g. manipulating pitch, then

duration, then amplitude, all with separate transformation parameters. For each type of trans-

formation, distributions can be truncated (at given multiples of SD) to avoid extreme transfor-

mation values which may be behaviorally unrealistic. Alternatively, transformation parameters

at each breakpoint can be provided manually by the user. For instance, this allows to flatten

the pitch contour of an original recording, by constructing a custom breakpoint function that

passes through the pitch shift values needed to shift the contour to a constant pitch value (Fig

3C and 3D).

Fig 3. Examples of pitch manipulations created with CLEESE. A: pitch of an original male speech recording (a 400ms utterance of the word

‘hello’). B: Random pitch transformations of the original, where pitch shift values at each breakpoint are drawn from a Gaussian distribution. C:

Manually-specified BPF created to flatten the pitch contour of the original recording. D: Resulting flat-pitch transformation, compared to

original.

https://doi.org/10.1371/journal.pone.0205943.g003
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Algorithm

The phase vocoder is a sound processing technique based on the short-term Fourier Transform

(STFT, [33]). The STFT decomposes each successive part (or frame) of an incoming audio sig-

nal into a set of coefficients that allow to perfectly reconstruct the original frame as a weighted

sum of modulated sinusoidal components (Eq (1)). The phase vocoder algorithm operates on

each frame’s STFT coefficients, modifying them either in their amplitude (e.g. displacing fre-

quency components to higher frequency positions to simulate a higher pitch) or their position

in time (e.g. displacing frames to later time points to simulate a slower sound). It then generates

a modified time-domain signal from the manipulated frames with a variety of techniques

meant to ensure the continuity (or phase coherence) of the resulting sinusoidal components

[34, 35]. Depending on how individual frames are manipulated, the technique can be used e.g.

to change a sound’s duration without affecting its pitch (a process known as time stretching), or

to change a sound’s pitch without changing its duration (pitch shifting, see [36] for a review).

In more detail, the phase vocoder procedure considers a (digital) sound x as a real-valued

discrete signal, and a symmetric real-valued discrete signal h composed of N samples, usually

called window, that is used to cut the input sound into successive frames. In the analysis stage,

frames are extracted with a time step (or hop size) Ra, corresponding to successive time posi-

tions tua ¼ Rau, where u is the index of the u-th frame. The discrete STFT of x with window h is

given by the Discrete Fourier Transform (DFT) of the time frames of x multiplied by h,

Xðtua ;OkÞ ¼
X

n

hðnÞ xðtua þ nÞe� jOkn ; ð1Þ

where Xðtua ;OkÞ is the STFT coefficient corresponding to frequency Ok ¼
2pk
N , k = 0, . . ., N − 1

in the u-th frame of the signal. X is a two-dimensional complex-valued representation, which

can be expressed in terms of real and imaginary parts or, equivalently, amplitude and phase.

The amplitude of the coefficient at time index u and frequency bin k is given by jXðtua ;OkÞj,

while its phase is ffXðtua ;OkÞ ¼ arg ðXðtua ;OkÞÞ.

A given transformation T(X) = Y can then be performed by altering the amplitudes, phases

or temporal positions of the frames, leading to a complex-valued representation Y of the same

dimension as X. The transformed coefficients in Y are then used to synthesize a new sound y,

using the inverse procedure to Eq (1). Using the same window function h and a synthesis hop

size Rs such that tus ¼ Rsu, the output signal is given by

yðnÞ ¼
X

u

hðn � tus Þ yuðn � tus Þ ð2Þ

yuðnÞ ¼
1

N

XN� 1

k¼1

Yðtus ;OkÞe
jOkn: ð3Þ

Time stretching is performed by modifying the synthesis hop size Rs with respect to the

analysis hop size Ra. In CLEESE’s implementation, the analysis hop size Ra is changed accord-

ing to the desired stretch factor t, while the synthesis hop size Rs is kept constant (the other

way around is also possible). Pitch shifting with a factor p can be performed by either warping

the amplitudes of each frame along the frequency axis, or by performing time stretching with

the same factor p followed by resampling with the inverse factor 1/p to restore the original

duration (CLEESE uses the latter method). Finally, amplitude manipulations by a time-fre-

quency mask G composed of scalar gain factors gu,k can be generated by taking jYðtua ;OkÞj ¼

gu;k � jXðtua ;OkÞj for the amplitudes, and leaving phases unchanged.
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When STFT frames are time-shifted as part of the phase-vocoder transformation, the posi-

tion of the u-th output frame is different from tua and the phases of the STFT coefficients have

to be adapted to ensure the continuity of the reconstructed sinusoidal components and the

perceptual preservation of the original sound’s timbre properties. Phase vocoder implementa-

tions offer several methods to this end [36]. In one classic procedure (horizontal phase synchro-
nization), phases are adjusted independently in all frequency positions, with phases at position

tus extrapolated from phases at position tu� 1
s [34]. In an improved procedure (vertical phase syn-

chronization, or phase-locking), each frame is first analysed to identify prominent peaks of

amplitude along the frequency axis, and phases are only extrapolated in the peak frequency

positions; phases of the frequency positions around each peak are locked to the phase of the

peak frequency position [35]. It is this second procedure that is implemented in CLEESE.

Further artifacts are inherent to phase-vocoder transformations. For instance, the pitch

shifting procedure also shifts the positions of the formants, which results in unnatural timbres

for shifting factors of more than a few semitones. Several strategies have been devised in the lit-

erature to compensate for this formant shift, often based on the detection and preservation of

the original spectral envelope of the input signal (a spectral envelope is a smooth curve that

approximately follows the contour defined by the amplitude peaks of the sinusoidal partials in

the spectrum). Another common artifact is transient smearing, which is the distortion and loss

of definition of the transients when they are subjected to time stretching (transients are noisy,

aperiodic parts of the sound, such as unvoiced consonants). This can be avoided by an addi-

tional step aimed at detecting the unvoiced portions of the signal and bypassing phase vocoder

modifications on those segments. Neither envelope nor transient preservation are imple-

mented in the current version of CLEESE, but their perceptual importance is deemed to be

minimal in the usage scenario discussed here, which involves small random variations of the

pitch and stretch factors.

Usage

CLEESE is implemented as module for the Python (versions 2 and 3) programming language,

and distributed under an open-source MIT License. It provides its own implementation of the

phase vocoder algorithm, with its only dependencies being the numpy and scipy libraries.

In its default ‘batch’ mode, CLEESE generates many random modifications from a single

input sound file, called the base sound. It can be launched as follows:
import cleese
inputFile = ‘path_to_input_sound.wav’
configFile = ‘path_to_config_file.py’
cleese.process(soundData = inputFile, configFile = configFile)

where inputFile is the path to the base sound (a mono sound in WAV format) and

configFile is the path to a user-generated configuration script containing generation

parameters for all transformations. For each run in batch mode, the toolbox generates an arbi-

trary number of random BPFs for each transformation, applies them to the base sound, and

saves the resulting files and their parameters.

The main parameters of the configuration file include how many files should be generated,

where the transformed files should be saved, and what transformation (or combinations

thereof) should be applied. For instance, the following configuration file generates 10 audio

files which result from a random stretch, followed by a random pitch transformation of the

base sound.
# main parameters
main_pars = {

‘numFiles’: 10, # number of output files to generate

CLEESE: Audio reverse-correlation toolbox
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‘outPath’: ‘/path_to_output_folder/’, # output root folder
‘chain’: True, # apply transformations in series (True)
# or parallel (False)
‘transf’: [‘stretch’, ‘pitch’] # modifications to apply

}

In addition, the configuration file includes parameters that specify how BPFs should be

generated for each transformation, including the number or duration of BPF windows, their

type (ramp or square) and the standard deviation of the gaussian distribution used to sam-

ple breakpoints. As an example, the following parameters correspond to pitch BPFs consist-

ing of 6 ramp windows, each with a normally distributed pitch shift between -300 and 300

cents.
# pitch transformation parameters
pitch_pars = {

‘winLen’: 0.11, # BPF window (sec)
# if 0: static transformation
‘numWin’: 6, # number of BPF windows.
# if 0: static transformation
‘winUnit’: ‘n’, # ‘s’: force winLen in seconds,
# ‘n’: force number of windows
‘std’: 300, # standard deviation for each breakpoint
‘trunc’: 1, # truncate distribution (factor of std)
‘BPFtype’: ‘ramp’, # type of breakpoint function:
# ‘ramp’: linear interpolation between breakpoints
# ‘square’: square BPF
‘trTime’: 0.02 # transition time for square BPF (sec)

}

The CLEESE module is distributed with a Jupyter notebook tutorial, showing further exam-

ples of using the toolbox for sound manipulation. In addition, all experimental data and analy-

sis scripts (also in the form of Jupyter notebooks) from the following two case-studies are

made available as supplementary material.

Case-study (1): Speech intonation

To illustrate the use of CLEESE with speech stimuli and pitch shifting, we describe here a short

reverse-correlation experiment about the perception of speech intonation. Speech intonation,

and notably the temporal pattern of pitch in a given utterance, can be used to convey syntactic

or sentence mode information (e.g. whether a sentence is interrogative or declarative), stress

(e.g. on what word is the sentence’s focus), emotional expression (e.g. whether a speaker is

happy or sad) or attitudinal content (e.g. whether a speaker is confident or doubtful) [37]. For

instance, patterns of rising pitch are associated with social traits such as submissiveness, doubt

or questioning, and falling pitch with dominance or assertiveness [38–40]. In addition, recent

neurophysiological evidence suggests that intonation processing is rooted at early processing

stages in the auditory cortex [41]. However, it has remained difficult to attest of the generality

of such intonation patterns and of their causality in cognitive mechanisms. Even for informa-

tion as seemingly simple as the question/statement contrast, which is conventionally associated

with the “final Rise” intonation, empirical studies show that, while frequent, this pattern is not

as simple nor common as usually believed [42]. For instance, in one analysis of a corpus of 216

questions, the most frequent tone for polar questions (e.g. “Is this a question?”) was a Fall [43].

In addition, in English, interrogative pitch contours do not consistently rise on the final part of

the utterance, but rather after the first syllable of the content word [44] (e.g. “Is this a question
you’re asking? vs “Is this a question you’re asking?”).
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We give here a proof of concept of how to use CLEESE in a reverse-correlation experiment

to uncover what exact pitch contour drives participants’ categorization of an utterance as inter-

rogative or declarative. Data come from the first experiment presented in [31].

Methods

Stimuli. One male speaker recorded a 426ms utterance of the French word “vraiment”

(“really”), which can be experienced either as a one-word statement or question. We used

CLEESE to artificially manipulate the pitch contour of the recording. First, the original pitch

contour (mean pitch = 105Hz) was artificially flattened to constant pitch, using the procedure

shown in Fig 3C and 3D. Then, we added/subtracted a constant pitch gain (± 20 cents, equat-

ing to ± 1 fifth of a semitone) to create the ‘high-’ or ‘low-pitch’ versions presented in each trial

(note that we created these “high” and “low” pitch categories to facilitate participants’ task, but

they are not necessary). Finally, we added Gaussian “pitch noise” (i.e. pitch-shifting) to the

contour by sampling pitch values at 6 successive time-points, using a normal distribution

(SD = 70 cents; clipped at ± 2.2 SD), linearly interpolated between time-points, using the pro-

cedure shown in Fig 3A and 3B. The choice of SD in this experiment was set empirically, based

on the plausible pitch changes in natural speech (<200 cents between consecutive time points).

See S3 Sound for examples of stimuli.

Procedure. 700 pairs of randomly-manipulated voices were presented to each of N = 5

observers (male: 3, M = 22.5yo), all native French speakers with self-reported normal hearing.

Participants listened to a pair of two randomly-modulated voices and were asked which of

the two versions was most interrogative. Inter-stimulus interval in each trial was 500 ms, and

inter-trial interval was 1s.

Apparatus. The stimuli were mono sound files generated at sampling rate 44.1 kHz in

16-bit resolution by Matlab. They were presented diotically through headphones (Beyerdy-

namic DT 770 PRO; 80 ohms) at a comfortable sound level.

Analysis. A first-order temporal kernel [45] (i.e., a 7-points vector) was computed for

each participant, as the mean pitch contour of the voices classified as interrogative minus the

mean pitch contour of the voices classified as non-interrogative. Kernels were then normalized

by dividing them by the absolute sum of their values and then averaged over all participants

for visualization. A one-way repeated-measures ANOVA was conducted on the temporal

kernels to test for an effect of segment on pitch shift, and posthocs were computed using Bon-

ferroni-corrected Tukey tests. All experimental data and analysis code for Case Study 1 is pro-

vided in supporting information, as S1 Data and S1 and S2 Codes.

Results

Observers’ responses revealed mental representations of interrogative prosody showing a con-

sistent increase of pitch at the end of the second syllable of the stimulus word (Fig 4-left), as

reflected by a main effect of segment index: F(6, 24) = 35.84, p = 7.8e-11. Pitch shift at segment

5 (355ms) was significantly different from all other segment locations (all ps<0.001). The pat-

tern was remarkably consistent among participants, although all participants were tested on

separate set of random stimuli (Fig 4-right).

Case-study (2): Musical rhythm

To illustrate another use of CLEESE, this time with musical stimuli and the time-stretching

functionality, we describe here a second reverse-correlation experiment about the perception

of musical rhythm and expressive timing.
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The study of how participants perceive or accurately reproduce the rhythm of musical

phrases has informed such domain-general questions as how humans represent sequences of

events [46], internally measure speed and tempo [47] and entrain to low- and high-frequency

event trains [48]. For instance, it is often observed that musicians tend to lengthen notes at the

ends of musical phrases [49] and that even non-musicians anticipate such changes when they

perceive music [50]. However, the cognitive structures that govern a participant’s representa-

tion of the rhythm of a given musical passage are difficult to uncover with experimental meth-

ods. In [50], it was accessed indirectly by measuring the ability to detect timing errors inserted

at different positions in a phrase; in [51], participants were asked to manually advance through

a sequence of musical chords with a key press, and the time dwelt on each successive chord

was used to quantify how fast they internally represented the corresponding musical time.

Here, we give a proof of concept of how to use CLEESE in a reverse-correlation experiment to

uncover what temporal contour drives participants’ judgement of a rhythmically competent/

accurate rendition of the well-known song Happy birthday.

Methods

Stimuli. One female singer recorded a a capella rendering of the first phrase of the French

folk song “Joyeux anniversaire” (�. � � � � �; translation of English song “Happy birthday to

you” [52]). We used CLEESE to artificially manipulate the timing of the recording by stretch-

ing it between different breakpoints. First, we manually identified the time onset of each sung

note in the phrase, and use these positions as breakpoints. Second, the original temporal con-

tour was artificially flattened (i.e. all notes were stretched/compressed to have identical dura-

tion � � � � � �), while preserving the original pitch of each note. The duration of this final

stimulus was 3203ms. Then, we added Gaussian “temporal noise” (i.e. time-stretching) to each

Fig 4. Mental representation of interrogative prosody. Left: Average first-order kernel derived by reverse-correlation

on N = 5 participants, showing an increase of pitch at the end of the second syllable. Right: individual kernel from each

of the participants.

https://doi.org/10.1371/journal.pone.0205943.g004
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note by sampling stretch values at 6 successive time-points, using a normal distribution cen-

tered at 1 (SD = 0.4; clipped at ± 1.6 SD), using a square BPF with a transition time of 0.1 s.

The resulting stimuli were therefore sung variants of the same melody, with the original pitch

class, but random rhythm (see S4 Sound).

Procedure. Pairs of these randomly-manipulated sung phrases were presented to N = 12

observers (male: 6, M = 22yo), all native French speakers with self-reported normal hearing.

Five participants had previous musical training (more than 12 years of instrumental practice)

and were therefore considered as musicians, the other seven participants had no musical train-

ing and were considered as non-musicians. Participants listened to a pair of two randomly-

modulated phrases and were asked which of the two versions was best sung/performed. Inter-

stimulus interval in each trial was 500 ms, and inter-trial interval was 1s. Each participant was

presented with a total of 313 trials. There were 280 different trials and the last block of 33 trials

was repeated twice (in the same order) to estimate the percentage of agreement. After the test,

all participants complete the rhythm, melody, rythm-melody subtests of the Profile of Music

Perception Skills (PROMS, [53]), in order to quantify their melodic and rhythmic perceptual

abilities.

Apparatus. Same as previous section.

Analysis. A first-order temporal kernel [45] (i.e., a 6-points vector) was computed for

each participant, as the mean stretch contour of the phrases classified as ‘good performances’

minus the mean stretch contour of the phrases classified as ‘bad performances’ (note that

because stretch factors are ratio, the kernel was in fact computed in the log stretch domain, as

mean log t+ −mean log t−, where t+ and t− are the contours of selected and non-selected trials,

resp.). Kernels were then normalized by dividing them by the absolute sum of their values and

then averaged over all participants. A one-way repeated-measures ANOVA was conducted on

the temporal kernels to test for an effect of segment on time-stretch, and posthocs were com-

puted using Bonferroni-corrected Tukey tests. In addition, the amount of internal noise for

each subject was computed from the double-pass percentage of agreement, using a signal

detection theory model including response bias and late additive noise [54, 55]. All experimen-

tal data and analysis code for Case Study 2 is provided in supporting information, as S1 Data

and S1 and S2 Codes.

Results

Observers’ responses revealed mental representations of note durations that significantly

evolve through time (Fig 5-left) with a main effect of time index: F(5, 40) = 30.7, p = 1e-12.

The ideal theoretical timing contour (0.75-0.25-1-1-1-2), as given by the score of this musical

phrase, was converted in time-stretch units by taking the log of these values and was superim-

posed on Fig 5. Several deviations from this theoretical contour are worth noting. First, both

musicians and non-musicians had shortened representations for the first note of the melody

(�. �! � �) and, to a lesser extent, the second note. This is consistent with previous findings

showing that expressive timing typically involving a shortening of the short notes, and a

lengthening of the long notes of a melody [49]. Second, both musicians and non-musicians

had similarly shortened representations for the duration of the last note (� � � �! � � � �), a pat-

tern is at odds with the note-final lengthening reported for non-musicians in a self-paced lis-

tening paradigm [51], but consistent with the lengthening of the last-but-one inter-onset-

interval found in professional pianists [49, 56]. Finally, the analysis revealed a significant inter-

action of time index and participant musicianship: F(5, 40) = 2.5, p = .045. The mental repre-

sentations of a well-executed song for the non-musician participants had longer durations on

the third note (“happy BIRTH-day to you”) compared with musicians participants. Needless
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to say, these differences between musicians and non-musicians are only provided for illustra-

tive purposes, because of the small-powered nature of this case-study, and their experimental

confirmation and interpretation remain the object of future work.

One should note that it is complicated to quantitatively compare the time-stretch contours

obtained with reverse-correlation with an ideal theoretical pattern. First, time-stretch factors

derived by reverse-correlation have arbitrary scale, and the ideal pattern is therefore be repre-

sented at an arbitrary position on the y-axis, and rescaled to have the same (max-min) stretch

range as the one obtained experimentally. Second, because participants’ task is to infer about

the best overall rhythm and not individual note duration, the time-stretch values at individual

time points are not perceptually independent (e.g., if the first two notes of a stimulus are long,

participants may infer a slower beat and expect even longer values for the following notes). For

these reasons, the ideal rhythmic pattern superimposed on these measured patterns should

simply be taken as an illustration of how note durations theoretically evolve from one note (i)

to the next (i+1). Further theoretical work will be needed to best analyze and interpret dura-

tion kernels derived from such reverse-correlation experiments.

In addition, internal noise values computed from the repeated block of this experiment

indicate that subjects did not behave at random but rather relied on a somewhat precise mental

representation of the ideal temporal contour (mean internal noise of 1.1 (SD = 1.1) in units of

external noise; comparable with the average value of 1.3 obtained in typical low-level sensory

psychophysical detection or discrimination tasks, see [55]). In an exploratory manner, we

asked whether these internal noise values would correlate with the participant’s degree of

musical skills (average score obtained for the 3 sub-tests of PROMS). We found a significant

negative correlation (r = -0.65, p = 0.02), suggesting that low musical skills (regardless of musi-

cianship) are associated with a more variable mental/memory representation of the temporal

contour of this melody (Fig 5-right). Because this correlation may also be driven by the

amount of attention that participants had both in the PROMS and in the reverse-correlation

tasks (which may be similar), further work is required to determine the exact nature of this

observed relationship.

Fig 5. Mental representation of the rhythm of a well-known song. Left: Average first-order kernel derived by

reverse-correlation on N = 12 participants, superimposed with the theoretical pattern (dotted line), showing how the

internally represented pattern departed from the theoretical one. Right: log-values of internal noise estimated from the

double-pass technique are negatively correlated with the participant’s degree of musical skills (average score obtained

for the 3 sub-tests of PROMS); r = -0.65, p = 0.02.

https://doi.org/10.1371/journal.pone.0205943.g005
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Discussion

By providing the ability to manipulate speech and musical dimensions such as pitch, duration

and amplitude in a parametric, independent manner in the common environment of the

Python programming language, the open-source toolbox CLEESE brings the power of data-

driven/reverse-correlation methods to the vast domain of speech and music cognition. In two

illustrative case-studies, we have used CLEESE to infer listeners’ mental representations of

interrogative intonation (rising pitch at the end of the utterance) and of the rhythmic structure

of a well-known musical melody, and shown that the methodology had potential to uncover

potential individual differences linked, e.g., to participant’s training or perceptual abilities.

As such, the toolbox and the associated methodology open avenues of research in communica-

tive behavior and social cognition. As a first application of CLEESE, we have recently used a

reverse-correlation paradigm to uncover what mental representations of pitch profiles underlie

judgements of speaker dominance and trustworthiness in short utterances like the word ‘hello’

[31]. The technique allowed to establish that both constructs corresponded to robust and dis-

tinguishing pitch trajectories, which remained remarkably stable whether males or female lis-

teners judged male or female speakers. Other potential questions include, in speech, studies of

expressive intonation along all characteristics of pitch, speed and amplitude, judgements of

emotions (e.g. being happy, angry or sad) or attitudes (e.g. being critical, impressed or ironic);

in music, studies of melodic and rythmic representations in naive and expert listeners, and

how these may differ with training or exposure. Beyond speech and music, CLEESE can also

be used to transform an study non-verbal vocalizations, such a infant cries or animal calls.

By measuring how any given individual’s or population’s mental representations may differ

from the generic code, data-driven paradigms have been especially important in studying indi-

vidual or cultural differences in face [2, 57] or lexical processing [23]. By providing a similar

paradigm to map mental representations in the vast domain of speech prosody, the present

technique opens avenues to explore e.g. dysprosody and social-cognitive deficits in autism-

spectrum disorder [58], schizophrenia [59] or congenital amusia [60], as well as cultural differ-

ences in social and affective prosody [61].

Because CLEESE allows to create random variations among the different dimensions of

both speech and musical stimuli (pitch, time, level), it also opens possibilities to measure the

amount of internal noise (e.g. using a double-pass technique as in the case-study 2 here) asso-

ciated to the processing of these dimensions in many various high-level cognitive tasks. This is

particularly interesting because it provides a quantitative way to (1) demonstrate that partici-

pants are not doing the task at random (which is always an issue in this type of high-level task

where there is no good/bad answers that would lead to an associated d-prime value) and (2)

investigate which perceptual dimensions are cognitively processed with what amount of noise.

The current implementation of CLEESE, and its application to data-driven experiments

in the auditory modality, leaves several methodological questions open. First, one important

choice to make when generating stimuli is the SD of the Gaussian distributions used to draw

parameters’ values (pitch in case study 1; time-stretch in case study 2). Our rationale in this

work has been to choose SDs that correspond to the typical variation observed for each param-

eter in natural speech; e.g.<200 cents (SD = 70cents cut at 2.2SD) for pitch contours in the

first case study. We find this empirical approach appropriate in practice, since it allows creat-

ing stimuli that sound natural. However, it would be interesting to examine the optimality of

this choice in future studies, for example by testing different values of SDs or using an adaptive

staircase procedure to select the one that is best suited to uncover the mental representations.

It is important to note that, theoretically, first-order kernels do not depend on the choice of

SD, as filters are scaled in units of external noise variance, i.e. SD [4]. However, it is reasonable
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to expect that using low values of SD can lead to poor kernel resolution (because many trials

would not be audible), and high values can create undesired sound artefacts or inconsistencies

(e.g. pitch variations that are too high or fast, or would not occur with a natural voice produc-

tion system). Therefore, basing the value of SD on the range of variation measured in natural

voices, or on pilot/preliminary experiments seems the most appropriate choice.

Second, in the current form of the software, the temporal dynamics of the noise/perturba-

tions is purely random, and changes of pitch/time or amplitude are independent across seg-

ments (a classical assumption of the reverse-correlation technique [4]). This assumption may

create prosodic patterns that are not necessary realizable by the human voice and thus bias the

participant responses for those trials. In vision, recent studies have manipulated facial action

units with a restricted family of temporal profiles parametrized in acceleration, amplitude and

relative length [25]. In a similar manner, future versions of CLEESE could constrain prosodic

patterns to correspond more closely to the dynamics of the human voice or to the underlying

production process, e.g. not aligned with arbitrary segment locations but with the underlying

phonemic (or musical) structure. A third important question when running reverse-correlation

experiments concerns how many trials are necessary to obtain stable kernel. Theoretically, the

optimal number of trials depends not only on the number of points that are manipulated (i.e.

the size of the BPF, e.g. 7 time points in case study 1), but also on the number of points that

actually drive participants’ judgments (e.g. in case study 1, only 2 or 3 points, the weights given

to other time points being virtually null), the complexity of the judgement (and how far from

linear it is), the suitability of the dimension considered to probe the mental representation

Fig 6. Correlation between the kernel derived using the n first trials of case-study 1, and the kernel derived using

all trials (n = 700); n varying by steps of 20 trials (individual curves: Thin colored lines; averaged ± sem: Thick black

line with shaded error bars). These curves reflect the “speed” at which our measure converges toward the final kernel

estimate (insets show temporary kernels at stages n = 100, n = 300 and n = 700, averaged across subjects in black line,

and for the subject with the slowest convergence in yellow).

https://doi.org/10.1371/journal.pone.0205943.g006
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(here, pitch), as well as the amount of internal noise. In practice, it is therefore almost impossi-

ble to predict the required number of trials without having collected preliminary data. To illus-

trate the “speed” at which our measure of kernel converges towards the final measure in data

from case-study 1, we computed the correlation between the kernel derived using the n first tri-

als and the kernel derived using all 700 trials, for increasing values of n (Fig 6). For most sub-

jects, the correlation reaches already.8 when considering only the first 100 trials; but for some

subjects (e.g. yellow line), it takes 300 trials to get the same correlation. Overall, it is clear that

the choice of having 700 trials for that task was overestimated, and that we could have reached

the same precision with fewer trials. Other tasks, however, may require several thousands of tri-

als for each participant to reach the same correlation. A good practice when using this method

therefore seems to run a few participants before the main experiment, and determine how

much trials are required to reach stable estimates.

On a technical level, another possible direction for improvement is the addition of other

high-level manipulation dimensions. As an example, spectral envelope manipulation (option-

ally formant-driven) allows powerful transformations related to timbre, speaker identity and

even gender which all could be manipulated by CLEESE [62]. At an even higher abstraction

level, research could consider more semantically-related features (such as the mid-level audio

descriptors typically used in machine learning methods) or even feature-learning approaches

that would automatically derive the relevant dimensions prior to randomization [63]. Adding

these new dimensions will likely require a trade-off between their effectiveness for stimuli ran-

domization and their suitability for physical interpretation. Finally, improvements of the cur-

rent phase vocoder implementation in CLEESE may include additional modules such as

envelope or transient preservation to further improve the realism of the transformations.

Supporting information

S1 Sound. Audio example of pitch shifting manipulation with CLEESE, on French sentence

“je suis en route pour la réunion” (I’m on my way to the meeting).

(MP3)

S2 Sound. Audio example of time stretching manipulation with CLEESE, on French sen-

tence “je suis en route pour la réunion” (I’m on my way to the meeting).

(MP3)

S3 Sound. Example of trial for case-study 1, containing a pair of random pitch shifting of

the word ‘vraiment’ (really?).

(MP3)

S4 Sound. Example of trial for case-study 2, containing a pair of random time stretching of

the song ‘joyeux anniversaire’ (happy birthday to you).

(MP3)

S1 Data. Reverse-correlation data for case-studies 1 and 2, in csv format. See provided

Python notebook for format and analysis.

(ZIP)

S1 Code. Python notebook with analysis code for case-studies 1 and 2, recreating the arti-

cles’ figures and statistical analyses. Use with S1_Data.zip.

(IPYNB)

S2 Code. HTML version of S1 Code.

(HTML)
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